L Active Silicon

CAMERA INTERFACE BOARD USB 3.1 & HDMI (USB powered)

For Harrier, Tamron and Sony Block Cameras

- USB 3.1 & HDMI interface board for Tamron series, Harrier series and Sony EV-series cameras
- 1080p/1080i/720p 60/50/30Hz high-definition video output
- SuperSpeed USB (USB 3.1 Gen 1) Video Class (UVC) output
- HDMI 1.4a output

FEATURES

- USB 3.1 Gen 1 and HDMI interface solution for the Tamron, the Harrier AF-Zoom series (10x, 36x,40x,55x) and the Sony EV-series cameras.
- SuperSpeed USB (USB 3.1 Gen 1) USB Video Class output via USB Type C connector.
- HDMI output via (micro) Type D connector.
- Supports HD video modes up to 1080p60.
- Simultaneous display on both video outputs.
- UVC control of camera properties e.g. zoom, etc.
- VISCA camera control over RS-232 / RS-485 / TTL serial port or Harrier Virtual Serial COM port/Linux API over USB connection.
- Video output mode selected by DIP switches or UVC/VISCA control.
- VISCA programmable PWM output.
- Power supplied via USB socket or external connector.
- Interface boards and cameras can be purchased separately or as pre-assembled modules.

OVERVIEW

The Harrier USB/HDMI Camera Interface Board (AS-CIB-USBHDMI-002-A) is a member of Active Silicon's Harrier series of camera interface boards; it provides HDMI and USB Video Class (UVC) output for the Tamron cameras, Harrier 10x, 36x, 40x and 55x AF-Zoom cameras and Sony EV-series cameras. The USB Video output is enabled when the board is connected to a SuperSpeed USB 3.x host. The HDMI output is enabled when an HDMI cable is connected. The initial camera video mode (only set on power-up) may be selected by the DIP switch settings on the board. Camera video modes, along with other camera and interface board functions, may also be controlled by UVC commands, VISCA commands over serial communications (RS-485/RS-232/TTL) or by VISCA commands sent over the Harrier Virtual Serial COM port/Linux API and USB cable. The USB cable serves as both video output and UVC/VISCA over USB control communications channel.

The Harrier USB/HDMI Camera Interface Board can also be supplied as HDMI or USB-only variants.

For more details contact Active Silicon.

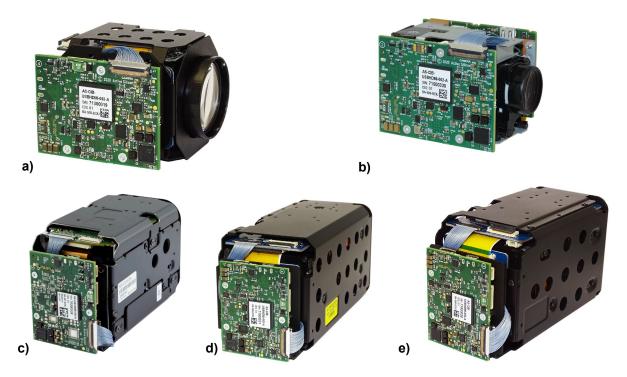


Figure 1. Camera assemblies with the Harrier USB/HDMI Camera Interface Board.

- a) Harrier 10x AF-Zoom USB/HDMI Camera,
- b) Harrier 10x AF-Zoom USB/HDMI Camera (Tamron MP3010M-EV),
- c) Harrier 30x AF-Zoom USB/HDMI Camera (Sony FCB-EV7520),
- d) Harrier 36x AF-Zoom USB/HDMI Camera (global shutter),
- e) Harrier 40x AF-Zoom USB/HDMI Camera.

Video Mode Selection

For supported video modes, the interface board video output mode is always the same as the output mode of the camera. The video mode output the board can be set by changing the video mode of the camera using VISCA commands (over serial connection or Harrier Virtual Serial COM port), UVC control (see section on Camera Control below), or by changing the DIP switch settings (and power cycling). Video modes up to 1080p60 (with camera dual LVDS mode setting) are supported. For details of supported video modes please see section: Video and Control Mode DIP Switch (SW1) below.

On power-up, the camera interface board reads the SW1 DIP switches and compares the selected setting to the current mode of the camera; if they are different, the board will set the camera video mode according to the switch settings and reset the camera (required to change mode). If the DIP switches are set for 'Default Camera Mode' then the camera (and camera interface board output) will power-up in the video mode last set on the camera. For more information see the section on DIP switch settings below.

USB/UVC Operation

The SuperSpeed USB video port (USB Type C, J6) can be used to stream/acquire image data in parallel with the HDMI display output. The USB port provides a UVC compliant (YUV422) video stream, and video data may be viewed on any UVC compliant host application such as VLC, Microsoft Camera or Active Silicon's HarrierView UVC Application.

Note: A Superspeed host USB port and Superspeed USB cable with a supported data rate ≥5Gbps must be used.

The HarrierView application demonstrates how to display/record video from the USB Video Class driver and implement UVC camera controls. The HarrierView application is part of the Harrier USB SDK, this can be downloaded from the Active Silicon website. There is also sample UVC code and documentation at:

https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/usb-video-class-driver

Video modes up to 1080p60 (with camera dual LVDS mode setting) are supported. The camera must be set to a supported UVC video mode (note: the actual video modes supported are dependent on the model of the camera). For details of video modes supported by the Harrier interface board please see section: Video and Control Mode DIP Switch (SW1) below. In addition, please consult the documentation for your camera. The video mode of the camera can be changed using VISCA commands (over serial or Harrier Virtual Serial COM port), UVC control (see the section on Camera Control below) or with the DIP switch settings (and a power cycle). Most UVC applications will reset the video mode on start-up and (if they support UVC control) they will expect to have control of the video mode of the camera, in this case you should set all the DIP switches to OFF except for DIP switch 7 (enables USB/UVC communication).

For optimum USB video performance under Windows, it is important to set the Windows performance/power settings to high performance. Similarly, the computer BIOS settings should be set to high processor performance with power saving modes disabled (including features like Speed Step, P States, etc.).

For support on host computers that are running Linux you will need to ensure that you have installed applications and drivers that support UVC (e.g. V4L drivers), please consult the documentation for your Linux distribution. Listed below are some helpful links:

http://www.ideasonboard.org/uvc/

https://www.kernel.org/doc/html/v4.13/media/v4l-drivers/uvcvideo.html

https://github.com/libuvc/libuvc

https://www.linuxtv.org/wiki/index.php/How_to_Obtain,_Build_and_Install_V4L-DVB_Device_Drivers https://help.ubuntu.com/community/Webcam

The default USB configuration of the Harrier USB camera/board reports that the camera requires a 1.5A USB port (as this is actually required to power the default camera over the USB link). Most modern Superspeed USB sockets are able to deliver this amount of current (see section: Camera Interface Board Power Supply) but Linux USB drivers often still report these USB ports as only 900mA capability; this means that the Linux driver will not start the device as it thinks the USB port cannot deliver enough power to drive the camera. Regardless of the capability of the actual USB hardware, or use of an external power supply, in this situation Linux will detect that the device requires too much power and will shut down the USB port.

This problem can be seen in DMESG:

```
[14256.348342] usb 2-1: New USB device strings: Mfr=1, Product=2, SerialNumber=7
[14256.348345] usb 2-1: Product: Active Silicon Harrier T1110-2
[14256.348348] usb 2-1: Manufacturer: Active Silicon
[14256.348351] usb 2-1: SerialNumber: 1-1602772708-TNMP1110-1
[14256.348644] usb 2-1: rejected 1 configuration due to insufficient available bus power
[14256.348647] usb 2-1: no configuration chosen from 1 choice
[14289.711761] usb 2-1: USB disconnect, device number 3
```

The workaround is to change the board USB power configuration to declare itself as self-powered; this means that no changes to Linux are required. Use the HarrierControl software to update the USB configuration of the board so that it will work with Linux.

For this download the HarrierControl software from

https://www.activesilicon.com/products/harriercontrol-camera-software/

and follow the instructions for reconfiguring the interface board with a Linux compatible configuration (also see Configuring the Board for Your Camera).

Note: You must ensure that the USB socket can provide enough power to drive the camera under all operating conditions (zoom and focus actions usually increase the camera power consumption)

Configuring the Board for Your Camera

The Harrier USB/HDMI Camera Interface Board is configured by default for the Tamron MP3010M camera, if you are using a different camera the USB settings of the board need to be re-configured to support the properties of the other camera. If you have purchased a pre-assembled camera unit then the board will already be correctly configured for the camera.

When the interface board is connected by a USB3 cable, the board will appear in the camera section of the Windows Device Manager. Depending on how it is configured it will appear with a different name.

Cameras supported by the Harrier USB/HDMI Camera Interface Board:

CAMERA	WINDOWS DEVICE MANAGER NAME
Tamron MP3010M-EV	Active Silicon Harrier T3010-2
Sony FCB-EV9520L	Active Silicon Harrier S9520-2
Sony FCB-EV9500L	Active Silicon Harrier S9500-2
Sony FCB-EV7520	Active Silicon Harrier S7520-2
Harrier 10x AF-Zoom Camera	Active Silicon Harrier 10LHD-2
Harrier 36x AF-Zoom Camera	Active Silicon Harrier 36LGHD-2
Harrier 40x AF-Zoom Camera	Active Silicon Harrier 40LHD-2
Harrier 55x AF-Zoom Camera	Active Silicon Harrier 55LHD-2

To change the configuration of your Harrier USB/HDMI Camera Interface Board please go to https://www.activesilicon.com/products/harriercontrol-camera-/software (in the software section of www.activesilicon.com) and download the HarrierControl software. Instructions for changing the board configuration are included in the download.

HDMI Operation

The HDMI output is enabled when an HDMI cable is plugged in. For details of supported HDMI video modes please see section: Video and Control Mode DIP Switch (SW1) below and the documentation for your camera. The video mode of the camera can be changed using VISCA commands (over serial, USB or Harrier Virtual Serial COM port), UVC control (see the section on Camera Control below) or by correct configuration of the DIP switch settings (and a power cycle).

Analog Output

Some cameras can output an analog video signal on pin 25 of the KEL connector (J1). If present, this signal is accessible as an output on the PWR/CTRL connector (J3) on the camera interface board. For example, if the Tamron MP3010M-EV camera mode is set to PAL/NTSC video mode it will generate an analog video output on J3 (note: there will also be no digital video output from the camera or from the Harrier interface board).

Note: the ground for the analog video signal is connected to the camera ground.

Status LED ("LED1")

The interface board is fitted with a multi-color LED to indicate camera status.

Flashing Yellow: This will occur at power-up; the number of flashes indicates the firmware version.

Flashing Green: Camera and interface board are powered and in start-up mode. During this period the

camera and interface board are not accessible and there will be no video output.

Solid Green: Camera and interface board are powered and working correctly.

Flashing Red: When there is a fault, the red LED will flash a number of times to indicate the type of

problem. The number of flashes will match the error code returned by the VISCA Error Code/Status query listed in the section Camera Interface Board VISCA

Commands. The LED will continue to flash until the error is cleared.

Test Pattern

A video test pattern output may be selected by driving pin 1 of the I/O connector (J2) low, or by sending the appropriate extended VISCA command over serial communications or Harrier Virtual Serial COM port. For interface board operation using extended VISCA serial commands, refer to the section Camera Interface Board VISCA Commands below.

Figure 2. SMPTE RP-219-2002 test pattern generated by the interface board.

VISCA Camera Control

For information on VISCA serial commands for your camera please refer to the user manual for your camera.

For information on interface board operation using extended VISCA serial commands, please refer to the section Camera Interface Board VISCA Commands/Inquiries below.

The Harrier camera interface board supports camera control via the UVC API and VISCA protocol (RS232/RS485/TTL/USB - Harrier Virtual Serial COM port/Linux API). The control communication channel selected is set by the configuration of the DIP switch settings (SW1 [5,6,7]) at board power-up; for more information see the section on DIP switch settings below.

VISCA commands can be used to control the camera settings in two ways:

1. RS232/RS485/TTL serial communication:

VISCA commands can be sent to the camera over RS232/RS485/TTL serial via the interface board PWR/CTRL connector (J3). Software control of these interfaces are usually implemented using COM ports or direct control of the serial interface via the host computer's operating system. Serial port settings are: parity - none, data bits - 8, stop bits - 1, baud rate is set by the camera but is usually 9600 by default.

2. USB connection using Harrier Virtual Serial COM Port / Linux API

If the Harrier USB SDK is installed (Windows only), a Harrier Virtual Serial COM port will appear when the USB port (J6) on the interface board is connected to a SuperSpeed USB port on the host computer (using a Superspeed USB cable). The Harrier Virtual Serial COM port can be used to send and receive VISCA data in the same way as a standard serial COM port. Although the Harrier Virtual Serial COM port looks and acts like a serial COM port, there is no actual serial port hardware and changing the serial port hardware settings (baud rate, etc.) will have no effect. (Note: DIP switch SW1 [7] must be set ON.) Responses to VISCA inquiries should always be read before sending the next command. The Linux API can be downloaded from the Active Silicon website.

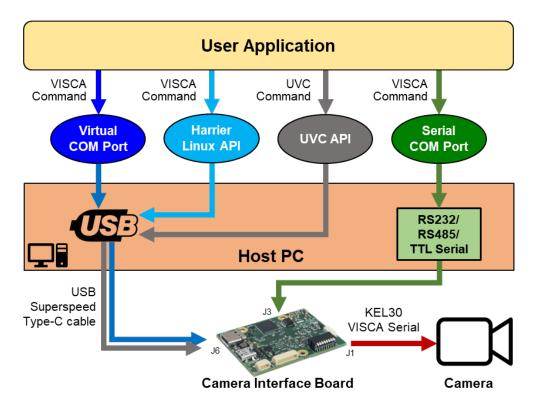


Figure 3. User application protocol options and channels for camera control.

UVC Based Camera Control

UVC is a USB device class, defined by the USB Implementers Forum, that describes USB devices capable of streaming video. For more information on UVC implementation please consult the USB Video Class specification (revision 1.1), Microsoft Windows documentation and the HarrierView application.

The ability to support specific UVC camera control features (e.g. setting a function to automatic or manual control) are dependent on the camera's feature set and capabilities. UVC value ranges used, and the specific functionality of each feature is camera specific, and it is therefore necessary to configure the interface board to match the model of camera it is connected to. In the camera certain features may be mutually exclusive or co-dependent, this needs to be considered when implementing the UVC application.

Note: the values for camera properties used in UVC commands are not always the same as the values used in the VISCA commands.

UVC CAMERA FEATURE	UVC RANGE (e.g. for Sony FCB-EV7520)	COMMENT
Focus	4096 (far) – 61440 (near)	Maximum values for focus vary per camera. Higher values are nearer focus.
Zoom	Optical Zoom: 0 – 16,384 Digital Zoom: 16,384 – 31,424	When the optical zoom reaches its maximum value, the camera will automatically switch to digital zoom.
Brightness	-14 — 14	Will be disabled when manual Gain control is enabled.
Hue	-14 — 14	-
Saturation	60 – 200	-
Sharpness	0 – 15	-
Gamma	0 – 1	Values match camera VISCA command parameters.
White Balance	0 – 9	Values match camera VISCA command parameters (values 3/5 [auto] are not supported).
Iris	160 – 1400	Auto control setting enabled by default.
Exposure	-13 – 0	Auto control setting enabled by default.
Gain	1 – 15	Can only be manually controlled when both Exposure and Iris are in manual control mode (Auto set OFF).
Backlight	0 – 1	This is disabled when Gain is set to manual control.
Compensation		With the Sony FCB-EV7520 camera, backlight compensation is also disabled when Iris or Exposure are set to manual control.

Camera Interface Board Custom VISCA Commands/Inquiries

The VISCA protocol can support connection of up to 8 cameras in a network; each camera is assigned a separate address. The default camera address is 1. To differentiate camera interface board specific commands from camera commands, the interface board has a pre-assigned fixed VISCA address of 2.

VISCA commands are composed of a series of hexadecimal format numbers that are sent to the camera. In this document the commands are formatted with a blank space between each byte to aid legibility, but the numbers sent to the camera / interface board must be sent without blank spaces.

Camera Interface Board Custom VISCA Commands

FUNCTION	COMMAND STRING	REPLY PACKET	DESCRIPTION
Camera hard reset (50ms)	82 01 0A 00 FF	A0 41 FF A0 51 FF	Acknowledge Complete
Set Pattern Generation Output Mode	82 01 0A 01 xx FF Where xx is: 00 - External Control 01 - Pattern Gen off 02 - Pattern Gen on	A0 41 FF A0 51 FF	Acknowledge Complete
Set Cross Hairs On/Off	82 01 0A 03 xx FF Where xx is: 00 – Off (Default) 01 – On	A0 41 FF A0 51 FF	Acknowledge Complete
Set Sync Output Mode	82 01 0A 04 xx FF Where xx is: 00 – Vsync (Default) 01 – Vsync# 02 – Hsync 03 – Hsync# 04 – Fsync 05 – Fsync# 06 – Logic low 07 – Logic high 08 – PWM output enabled (1)	A0 41 FF A0 51 FF	Acknowledge Complete
Serial bypass mode (Firmware v1.0.0 and above) Note: this command is not supported over the Harrier Virtual Serial COM port.	82 01 0A 06 00 FF	A0 41 FF A0 51 FF	Acknowledge Complete In serial bypass mode interface board commands are disabled and all serial data received is repeated to the camera.
USB VISCA response filter	82 01 0A 07 xx FF Where x is: 00 – All VISCA responses enabled. 01 – VISCA command Acknowledge and Complete responses disabled (default). 02 – All VISCA responses disabled.	A0 41 FF A0 51 FF	Acknowledge Complete Filtering out camera responses reduces the transaction traffic on the USB port to optimize video performance. Responses to VISCA inquiries should always be read before sending the next command.
PWM output setting (1)	82 01 0A 09 xx yy 00 FF	A0 41 FF A0 51 FF	xx = frequency divider: range 0x00 to 0xFE Output frequency = 59 kHz / (divider + 1) yy = duty cycle: 0x00 (=0%) to 0x64 (=100%)

Notes:

1) Implemented in firmware versions 3.3.0 upwards.

Camera Interface Board Custom VISCA Inquiries

FUNCTION	INQUIRY STRING (Hex)	REPLY PACKET	DESCRIPTION
Query Interface Board Firmware Version	82 09 0A 00 FF	A0 50 r1 r2 r3 FF	r1 = Major Version r2 = Minor Version r3 = Sub Minor Version
Query Interface Board Information	82 09 0A 01 FF	A0 50 r1 r2 FF	r1 = Hardware revision r2 = Board variant
Query Interface Board Health ⁽¹⁾ Note: Temperature (in degrees C) is measured in the FPGA device and is reported in hexadecimal format with a +60°C offset. To calculate the FPGA temperature in degrees C, convert the hexadecimal value reported to decimal, then subtract 60. (e.g. r2 = 0x73 = 115 FPGA temperature = (115-60) = 55°C)	82 09 0A 02 FF	A0 50 r1 r2 FF	r1 = Status (Bit 0-6 set indicates no fault condition) Bit 0 = Voltage OK Bit 1 = LVDS PLL clock OK Bit 2 = Reserved Bit 3 = Pixel PLL clock OK Bit 4 = Reserved Bit 5 = Cam. comms initialized Bit 6 = Running / OK Bit 7 = Error state r2 = Temperature (in hex) +60°C (0x3C) offset.
Query Interface Board DIP Switch Status	82 09 0A 03 FF	A0 50 r1 FF	r1 = DIP Switch Settings
Query Interface Board Enhanced Hardware Information	82 09 0A 04 FF	A0 50 r1 r2 r3 r4 r5 FF	r1 = Project code r2 = Project board r3 = Board issue r4 = Build MSB r5 = Build LSB
Query Error code ⁽¹⁾	82 09 0A 05 FF	A0 50 r1 FF	r1 = Status Code (Value returned indicates fault condition) 00 = No error 01 = FPGA core temperature 02 = USB 5V power rail fault 03 = Main power rail fault 04 = 1V8 power rail fault 05 = 3V3 power rail fault 06 = 1V1 power rail fault 07 = 2V5 power rail fault 08 = 5V HDMI DDC fault 09 = Camera comms timeout 0A = Camera video mode/LVDS link width setup fault 0B = LVDS clock loss of lock 0C = Reserved 0D = Pixel clock loss of lock 0E = USB error 0F = Firmware type error

Notes:

1) Implementation changed in firmware versions 2.3.0 upwards.

Camera Interface Board Power Supply

The Harrier USB/HDMI Camera Interface Board can be powered via the Power and Control Connector (J3) or by the USB Type C (J6) connector. The camera interface board will automatically switch power source between the J6 USB and J3 header connectors. If both are connected, the Power and Control Connector (J3) will be the selected supply.

The camera (connected via the KEL cable to J1) is also powered by the selected supply, hence the power source must be able to supply enough current to drive both the camera and the camera interface board. Note that cameras usually use more power when running at high resolution/frequency, and when zooming and focusing - this must be considered when designing the system.

The PC USB 3.0 port specification describes three power output levels:

- Type A socket rated at 900mA/~4.5W.
- Type C socket rated at 1.5A/~7.5W.
- Type C socket rated at 3.0A/~15W.

Note that the voltage specification of a USB 3.0 port is nominally 5V but may vary between 4.75 and 5.25V (hence the power output of a 1.5A Type C rated socket could in theory be as low as 7.125W). There will also be a small amount of power dissipation/voltage loss across the USB connectors and cable, typically this is around 50mW, but it will depend on the quality of your cable and connectors.

USB ports are often designed to be able to support higher currents than the USB specification and systems with both Type C and Type A sockets often share the same power supply, but this cannot be guaranteed. To power your camera/ interface board via the USB connector you must ensure that the host USB socket can supply enough current to power both the interface board and camera under all expected modes of operation, e.g. power-up, zoom and focus.

If the intended USB socket cannot supply enough current to drive the camera, then an externally powered USB 3.0 hub can be used to supply the power over the USB cable (e.g. StarTech ST4300MINI).

For example, using typical values measured on a Sony FCB-EV7520A camera in 1080p60 mode:

ITEM	CURRENT (Amps@4.75V)	POWER (W)
Camera (not zooming)	1.065A	5.06W
Camera (zooming and focussing)	1.305A	6.20W

Hence powering a Sony FCB-EV7520A camera and Harrier USB/HDMI Camera Interface Board by USB will require a USB socket that can provide 1.5 Amps.

To prevent the operating system from shutting down the USB port, camera systems that require more than 7.5W/1.5 Amps (or 900mA for Linux USB camera configurations) can be configured to report that the camera is self-powered. Please see USB/UVC Operation. In this situation you must ensure that the host USB socket can supply enough current to power both the interface board and camera under all expected modes of operation; e.g. power-up, zoom and focus.

CONNECTOR SPECIFICATION

KEL30 Connector ("CAMERA"): 30-way (J1)

The interface board is fitted with a 30-way miniature connector to link to the matching connector on the camera.

Connector type: KEL USL00-30L

Mating cable: KEL USL20-30SS-010-C (100mm length) or

KEL USL20-30SS-005-C (50mm length) 30-way micro coaxial cable. Other lengths also available (subject to minimum order quantities).

Input/Output Connector ("I/O"): 4-way (J2)

The interface board is fitted with an industry standard 4-way connector for VSync signal output and test pattern/reset control inputs.

Connector type: JST SM04B-SRSS-TB

Mating cable: Suitable cable can be purchased as part of a cable kit (see ordering information).

PIN	SIGNAL	LEVEL	NOTES
1	PGEN#	TTL compatible 5V tolerant. Active low signalling.	Input pin with $10k\Omega$ pullup resistor. Drive low to enable the SMPTE test pattern output.
2	SYNC OUT / PWM output	TTL (3.3V CMOS compatible with 5V TTL.)	Sync active high by default. Alternate configurations selectable by software.
3	GND	ov	GND
4	RESET#	TTL compatible 5V tolerant. Active low signalling.	Input pin with $10k\Omega$ pullup resistor. Drive low to reset the camera and interface board.

Note: After some signal conditioning to remove noise, the RESET# input is also fed into the camera (if it supports this feature); hence a reset from this input may reset both the camera and the camera interface board.

Power and Control Connector ("PWR/CTRL"): 10-way (J3)

The interface board is fitted with an industry standard 10-way connector for power and serial control.

Connector type: JST SM10B-SRSS-TB

Mating cable: Suitable cable can be purchased as part of a cable kit (see ordering information).

PIN	SIGNAL	LEVEL	NOTES
1	RS-232 RxD / RS-485 B	TIA/EIA-232-F / TIA/EIA-485-A	VISCA communication selectable by DIP switch setting. See below.
2	RS-232 TxD / RS-485 A	TIA/EIA-232-F / TIA/EIA-485-A	VISCA communication selectable by DIP switch setting. See below.
3	Analog SD video out	PAL/NTSC levels	Sourced direct from camera (Pin 25 of J1). Note: not available with all cameras.
4	Power GND	0V	Also used as analog ground.
5	Power GND	0V	GND
6	DC Power In	8.25V to 15V	Power supply, nominal 9V.
7	VISCA GND	0V	GND for VISCA serial comms.
8	Logic RxD input	3.3V CMOS (3.3V / 5V TTL compatible, with internal 10k pull-up to 3.3V).	VISCA communication selectable by DIP switch setting. See below.
9	Logic TxD output	3.3V CMOS (3.3V / 5V TTL compatible)	VISCA communication selectable by DIP switch setting. See below.
10	DC Power In	8.25V to 15V	Power supply, nominal 9V.

Note: The interface board supports input voltages up to 15V, note that this supply is also used to power the connected block camera. To avoid damage to the camera the voltage supplied to the interface board must be within the specification of the camera connected to the board.

JTAG Connector (J4)

Test connector used in manufacturing for circuit verification.

HDMI Output Connector ("HDMI") (J5)

The interface board is fitted with a micro HDMI display output connector. HMDI output is active when an HDMI cable is connected.

Connector type: HDMI Type D (micro).

Mating Connector: Standard micro HDMI cable.

USB 3.0 Connector ("USB VIDEO") (J6)

This USB Type C connector provides a USB Video Class (UVC) v1.1 video stream for connection to a host PC. The connector also provides a UVC control port for camera control (optional). It can also provide power to the camera or board if the USB connection has a high enough current/power rating.

Connector type: USB Type C (5 Gbps)

Mating Connector: Standard USB 3.x Type A/C to Type C cable (5 Gbps min.)

Video and Control Mode DIP Switch (SW1)

The interface board is fitted with an 8-way DIP switch (SW1) to enable selection of camera video format on power-up, and VISCA camera control communication modes. Some cameras may not be able to support all of the video modes supported by the interface board; please check the documentation for your camera before using the DIP switch settings to select the video mode on power-up.

Camera Video Mode Settings (only read/set on power-up)

SW1-4	SW1-3	SW1-2	SW1-1	Video Format	Mode	HDMI	USB
OFF	OFF	OFF	OFF	Default Camera Mode (1)	0	✓	As below
OFF	OFF	OFF	ON	1080p60 ⁽²⁾	1	✓	✓
OFF	OFF	ON	OFF	1080p59.94 ⁽²⁾	2	✓	✓
OFF	OFF	ON	ON	1080p50 ⁽²⁾	3	✓	✓
OFF	ON	OFF	OFF	1080p30	4	✓	✓
OFF	ON	OFF	ON	1080p29	5	✓	✓
OFF	ON	ON	OFF	1080p25	6	✓	✓
OFF	ON	ON	ON	1080i60	7	✓	
ON	OFF	OFF	OFF	1080i59.94	8	✓	
ON	OFF	OFF	ON	1080i50	9	✓	
ON	OFF	ON	OFF	720p60	10	✓	✓
ON	OFF	ON	ON	720p59.94	11	✓	✓
ON	ON	OFF	OFF	720p50	12	✓	✓
ON	ON	OFF	ON	720p30	13	✓	
ON	ON	ON	OFF	720p29	14	✓	
ON	ON	ON	ON	720p25	15	✓	

Notes:

- 1) "Default Camera Mode": The camera video mode can be changed by a VISCA command, followed by a camera reset/re-initialization (there is a camera hard reset in the extended VISCA commands that may serve this purpose). On power-up, the camera will start in the video format/mode that was being used, or set, when it was last powered down. The USB and HDMI video outputs will be in the same video mode as the camera output.
- 2) Due to the high data bandwidth required to output these video modes (above 1080p30) cameras <u>must</u> be set to dual LVDS mode. For other modes (1080p30 and below) the camera must be set to single LVDS mode. When using VISCA commands to change camera video mode the LVDS mode must be set correctly, otherwise there will be no video output from the camera.
 e.g. Set Single LVDS mode: 81 01 04 24 74 00 00 FF Set Dual LVDS mode: 81 01 04 24 74 00 01 FF Note: these modes are not available with cameras that do not support dual LVDS mode (e.g. AS-CAM-55LHD and AS-CAM-36LGHD).
- 3) The DIP switches to select the Video Format are only read on power-up. To change mode using the DIP switches, power down the camera, set the switches and then power-up the camera. DIP switches will only be effective for operating modes supported by the camera currently in use.
- 4) Once the camera has completed power-up and is in the video mode selected by the DIP switches, VISCA serial or UVC commands can change the camera video mode and select any of the modes

- supported by the camera. Note: modes not supported by the interface board will not generate USB/HDMI video output, also see note 2).
- 5) On power-up, if the video mode DIP switches are set the interface board will attempt to change the camera mode and VISCA communications to the camera will be temporarily blocked. If the interface board fails to set the camera into the mode set on the DIP switches after 40 seconds, it will stop attempting to change the camera mode and send an error message (A0 DE AD FF); after this it will be possible to communicate with the camera. This enables the use of VISCA commands/inquiries to diagnose problems and manually set the video mode.

Interface Board Communications Mode (Serial/USB)

SW1-7	SW1-6	SW1-5	Communications Mode
OFF	OFF	OFF	J3: RS-232 VISCA
OFF	OFF	ON	J3: RS-485 VISCA termination disabled
OFF	ON	OFF	J3: RS-485 VISCA termination enabled
OFF	ON	ON	J3: TTL VISCA
ON	OFF	OFF	J6: USB3.0 SuperSpeed (UVC/Harrier Virtual Serial COM port)

Note: Changes to these switch settings should only be made while the board is not powered; changing the settings with the power on will require a board reset for correct function. SW1 [8] is reserved for future use.

CONFORMANCE

USB Video:	Compliant with SuperSpeed USB 3.1 (UVC v.1.1).		
HDMI:	Complian	nt with HDMI specification 1.4a	
Approvals:	Active Sil	licon makes the following approval statements:	
	CE	In accordance with the CE Marking regulations, the Harrier USB/HDMI Camera Interface Board is not a finished product and is supplied for further integration into a finished product that will be CE marked by the final manufacturer/integrator. Therefore, no CE marking or Declaration of Conformity is required or allowed.	
	RoHS3	This product is compliant with the RoHS3 requirements (Directive 2015/863/EU).	
	REACH	Please contact Active Silicon for the latest formal REACH declaration (EC 1907/2006).	
	EMC	This product is designed to be compliant with the following requirements when housed in a suitable enclosure:	
		 EN 55022:2010 (Class A) and EN 55024:2010 (EU Directive 2014/30/EU Electromagnetic Compatibility 	
		FCC Rules for Class A digital devices	
	UL	All printed circuit boards used in this product are manufactured by UL recognized manufacturers and have a flammability rating of 94-V0.	

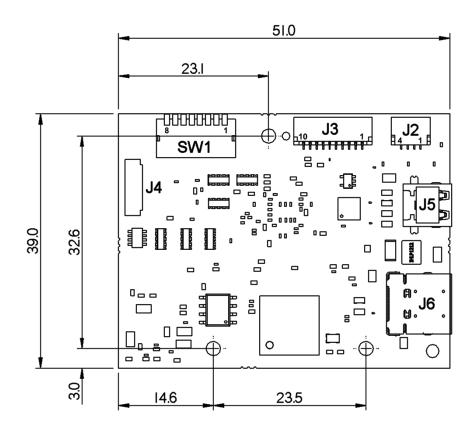


Figure 4. Mechanical overview, side B (Note – when mounted on a camera, this side faces the camera)

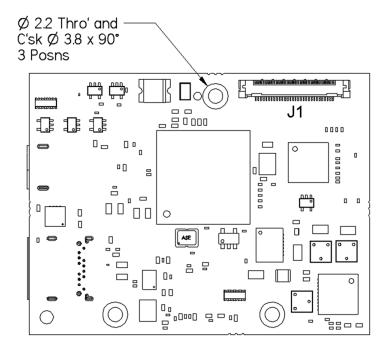


Figure 5. Mechanical overview, side A (Note – when mounted on a camera, this side faces away/out from the camera)

Page 15 of 17 www.activesilicon.com July 2024

PHYSICAL AND ENVIRONMENTAL DETAILS

Dimensions:	51mm x 39mm.
Weight:	~10g (interface board only, no cables).
Power Supply:	8.25V to 15V
Power Consumption:	1.6W typical @1080p60 with USB and HDMI active. (Note: does not include camera power).
Storage Temperature:	-40°C to +125°C
Operating Temperature:	0°C to +70°C (ambient environment).
Relative Humidity:	10% to 90% non-condensing (operating and storage).

ORDERING INFORMATION

PART NUMBER	DESCRIPTION
AS-CIB-USBHDMI-002-A	Harrier USB/HDMI Camera Interface Board for autofocus-zoom block cameras; provides simultaneous USB 3 video (UVC) and HDMI video output. Board only, no cables included.
AS-CIB-USBHDMI-002-10LHD-A	Harrier 10x AF-Zoom USB/HDMI Camera.
AS-CIB-USBHDMI-002-3010-A	Harrier 10x AF-Zoom USB/HDMI Camera (Tamron MP3010M-EV).
AS-CIB-USBHDMI-002-9520L-A	Harrier 30x AF-Zoom USB/HDMI Camera (Sony FCB-EV9520L).
AS-CIB-USBHDMI-002-9500L-A	Harrier 30x AF-Zoom USB/HDMI Camera (Sony FCB-EV9500L).
AS-CIB-USBHDMI-002-36LGHD-A	Harrier 36x AF-Zoom USB/HDMI Camera with global shutter.
AS-CIB-USBHDMI-002-40LHD-A	Harrier 40x AF-Zoom USB/HDMI Camera.
AS-CIB-USBHDMI-002-55LHD-A	Harrier 55x AF-Zoom USB/HDMI Camera.
AS-CIB-USBHDMI-001-EVAL-A	Evaluation Kit for Harrier USB/HDMI, and all Harrier USB/HDMI camera assemblies. The kit contains power supply, cables (AS-CIB-CBLKIT-003-A and micro-coax cable AS-CIB-USL30-100MM) and the Harrier Evaluation Board with PC serial interface (via USB UART). Not included: Camera and camera interface board.
AS-CIB-USL30-100MM	30-way micro-coax cable for connecting the interface board (J1) to the camera. Length 100mm. (Manufacturer: KEL, part number: USL20-30SS-010-C).
AS-CIB-USL30-50MM	30-way micro-coax cable for connecting the interface board (J1) to the camera. Length 50mm. Note if the board is mounted on the side of the camera this cable is too short, the 100mm cable is required. (Manufacturer: KEL, part number: USL20-30SS-005-C).
AS-CIB-CBLKIT-003-A	Cable kit for AS-CIB-USBHDMI-002-A containing cables for J2 and J3 that connect to the Harrier Evaluation Kit board.
AS-CIB-FIXKIT-001-A	Plastic clip, screws and spacers for mounting

PART NUMBER	DESCRIPTION
	AS-CIB-USBHDMI-002-A board to a Tamron MP3010M camera.
AS-CIB-BRK-007-A	Metal bracket, screws and spacers for mounting the AS-CIB-USBHDMI-002-A to Sony FCB-EV-series and Harrier 36x or 40x AF-Zoom Camera.
AS-CIB-BRK-009-A	Metal bracket, screws and spacers for mounting the AS-CIB-USBHDMI-002-A to the Harrier 10x AF-Zoom Camera.

Active Silicon offer custom design services and can adapt the product if it does not meet all your requirements. We are happy to discuss your system requirements and are looking forward to delivering the product you need.

CONTACT DETAILS

Headquarters:

Active Silicon Ltd

1 Waterside Court, Waterside Drive, Langley, Berks, SL3 6EZ, UK.

Tel: +44 (0)1753 650600 Email info@activesilicon.com Website: www.activesilicon.com North America:

Active Silicon, Inc.

479 Jumpers Hole Road, Suite 301, Severna Park, MD 21146, USA.

Tel: +1 410-696-7642
Email: info@activesilicon.com
Website: www.activesilicon.com

14-Jul-2024 CIB-USBHDMI