
v4.0.1

SNAPPER-24 Library
(for Snapper-24, Snapper-8,

Snapper-PCI24, Snapper-PCI8,
Snapper-PMC24 and Snapper-PMC8)

Programmer’s Manual

DataCell Limited

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Disclaimer

While every precaution has been taken in the preparation of this manual, DataCell Ltd assumes no responsibility for
errors or omissions. DataCell Ltd reserves the right to change the specification of the product described within this
manual and the manual itself at any time without notice and without obligation of DataCell Ltd to notify any person
of such revisions or changes.

Copyright Notice

Copyright  1994-1999 DataCell Ltd and Active Silicon Ltd. All rights reserved. This document may not in whole
or in part, be reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or
translated into any language or computer language without the prior written consent of DataCell Ltd.

Trademarks

“Apple”, “Macintosh” and “MacOS” are trademarks of Apple Computer Inc. “AMCC” is a registered trademark of
Applied Micro Circuits Corporation. “Dallas” is a registered trademark of Dallas Semiconductor Corporation.
“Dell” is a registered trademark of Dell Computer Corporation. “Flash Graphics” and “X-32VM” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks” and “CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS”, “Windows”, “Windows NT”, “Windows 95”, “Windows 98”,
“Win32”, “Visual C++” are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is a registered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris”
are registered trademarks of Sun Microsystems Inc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks” and “Tornado” are registered trademarks of Wind River
Systems Inc. “Xilinx” is a registered trademark of Xilinx.
All other trademarks and registered trademarks are the property of their respective owners.

Part Information

Part Number: SNP-MAN-SNP24-LIB

Version v4.0.1 September 1999

Printed in the United Kingdom.

Contact Details

Europe & ROW

USA

Web
Sales
Support

Web
Sales
Support

www.datacell.co.uk
info@datacell.co.uk
techsupport@datacell.co.uk

www.datacell.com
info@datacell.com
techsupport@datacell.com

Head Office:
DataCell Limited.
Falcon Business Park, 40 Ivanhoe Road,
Finchampstead, Berkshire, RG40 4QQ, UK

Tel +44 (0) 1189 324324
Fax +44 (0) 1189 324325

http://www.datacell.co.uk/
http://www.datacell.co.uk/
mailto:info@datacell.co.uk
mailto:techsupport@datacell.co.uk
http://www.datacell.com/
http://www.datacell.co.uk/
mailto:info@datacell.com
mailto:techsupport@datacell.com

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Snapper-24 Programmer’s Manual v4.0.1 i

Table of Contents

Introduction... 1

Concepts.. 2

Function Overview.. 4

Error Returns... 5

Sample Applications ... 6

Function List ... 9

SNP24_auto_gain.. 11

SNP24_auto_offset ... 12

SNP24_capture ... 13

SNP24_get_active_area .. 15

SNP24_get_ID .. 16

SNP24_get_levels ... 17

SNP24_get_LUTs ... 18

SNP24_get_parameter .. 19

SNP24_get_property... 21

SNP24_get_rev ... 22

SNP24_get_ROI ... 23

SNP24_get_ROI_max... 24

SNP24_get_subsample.. 25

SNP24_initialize ... 26

SNP24_is_50Hz.. 28

SNP24_is_capture_complete .. 29

SNP24_is_data_ready ... 30

SNP24_is_field1_captured.. 31

SNP24_is_field1_incoming .. 32

SNP24_is_locked.. 33

SNP24_is_sequence_dropped... 34

SNP24_is_sequence_mode ... 36

SNP24_is_trigger_started ... 37

SNP24_is_vsync_asserted... 38

SNP24_lm1882_prog.. 39

SNP24_read_video_data... 41

SNP24_reset_read_pointer.. 43

SNP24_set_active_area... 44

SNP24_set_callback.. 46

Snapper-24 Programmer’s Manual v4.0.1 ii

SNP24_set_capture..48

SNP24_set_clamp..52

SNP24_set_clk...53

SNP24_set_ctrlout ...56

SNP24_set_format...58

SNP24_set_image..60

SNP24_set_interrupts ..61

SNP24_set_levels ..64

SNP24_set_linescan_ctrl ...67

SNP24_set_linescan_freq ..69

SNP24_set_LUTs ..70

SNP24_set_parameter..72

SNP24_set_pix_per_line ...73

SNP24_set_ROI...74

SNP24_set_ROI_rounding ..76

SNP24_set_sync ..78

SNP24_set_timer ...82

SNP24_set_trigger...84

SNP24_set_TTL422 ..86

SNP24_set_video_src..88

SNP24_set_video_standard ...90

Snapper-24 Programmer’s Manual v4.0.1 iii

Snapper-24 Programmer’s Manual v4.0.1 Introduction 1

Introduction

This manual describes the Snapper-24 function library. These functions allow the capture of video images, using a
Snapper-24 module and one of a number of different host hardware platforms, and are independent of the host
hardware platform. This manual also applies to the Snapper-PCI24 and Snapper-PMC24 products, which are single
board combinations of a PCI-BIB baseboard and a Snapper-24 module.

The Snapper-24 library is also used for Snapper-8 applications. This is because the Snapper-8 is physically a
Snapper-24 with only one digitizer / memory channel fitted rather than all three channels. All applications written
for Snapper-8 will run identically on a Snapper-24 provided that the function SNP24_set_format is called directly.
Also, by using the SNP24_get_ID function, it is possible to write Snapper-24 applications which can also run in
some modes on a Snapper-8. All references in this manual to Snapper-24 also apply to Snapper-8 unless stated
otherwise.

Snapper-24 is referenced by a unique handle of type Thandle (a 32 bit unsigned integer). It is used by all the
software to identify a particular Snapper board and its associated data structures. This handle is automatically
generated when a Bus Interface Board detects it has a Snapper module fitted.

Snapper-24 Programmer’s Manual v4.0.1 Concepts 2

Concepts

Snapper-24 has on-board video memory which is arranged as two banks. The SNP24_capture function stores data
into this memory, and the SNP24_read_video_data function reads data out of the memory. The use of two banks of
memory allows interlaced images to be automatically deinterlaced, and allows faster acquisition rates than would be
possible with one bank. The use of two banks is transparent to the application. Each bank can store approximately
256K pixels.

CONVENTIONAL CAMERAS

“Conventional cameras” are “area scan” cameras, such as standard CCIR (50Hz) or EIA (60Hz, RS-170/170A)
formats, which generate images of m pixels by n lines (e.g. 640 by 480 for EIA cameras). This term includes both
commonly available interlaced cameras as well as progressive scan cameras, but does not include “line scan”
cameras - see below.

SINGLE CAPTURE MODE

This is the default mode, where a call to SNP24_capture only stores one image. Applications are simple to program,
but this mode does not take advantage of the speed up possible with two memory banks. This limits the rate at which
successive frames can be captured. In general even if a new capture is started as soon as the previous one completes,
it is probable that one incoming field or frame will be missed between those captured. This means that a full frame
image is limited to half real time acquisition (i.e. 12.5Hz for CCIR, or 15Hz for EIA), but sub-sampled images (i.e.
only one field) can be captured real time.

SEQUENCE MODE

To allow real time capture rate Snapper-24 can be used in “sequence mode”. This mode uses both memory banks,
allowing capture into one bank while the other bank is being read from. There is no point in using sequence capture
mode unless fast capture rates are needed because the application code is slightly more complex than for single
capture mode.

A significant difference when using sequence mode rather than single capture mode is that interlaced images are
always read out field by field, i.e. it is the responsibility of the application to deinterlace the fields into one frame.
Conversely in single capture mode the process of deinterlacing is by default hidden from the application. See the
TMG Programmer’s Manual (section 2 “Concepts”, and function TMG_display_image) for functions which handle a
sequence of fields.

If the read out (and any processing) of images in sequence mode takes longer than the time it takes to acquire a field,
the Snapper-24 hardware will automatically drop fields. If the capture mode is a frame (i.e. x1) then field pairs are
dropped. For example if in frame mode a field 1 (incoming sequence image 1) has just been read and processed, and
this takes longer than one field time, then:

• The following field 2 (incoming sequence image 2) will be captured OK because this will have been capturing
into the second Snapper-24 memory bank at the same time as the field 1 was being read.

• The following field 1 (incoming sequence image 3) will be dropped because the first Snapper-24 memory bank
was still being read from when this field should have been captured.

• The following field 2 (incoming sequence image 4) will also be dropped to ensure that successive images read
alternate between field 1 and field 2.

• Assuming that image sequence 1 has now been read, the following field 1 (incoming sequence image 5) will be
captured OK.

Whenever fields are dropped in sequence mode a flag is set (function SNP24_is_sequence_dropped).

Snapper-24 Programmer’s Manual v4.0.1 Concepts 3

CALLBACKS METHOD

Callbacks are software interrupts built into the Snapper-24 library that call user application code on specific events,
for example, at the end of data transfer or at the start of the vertical sync time from the camera. While programming
with callbacks is slightly more complex, it has two main advantages:

• The image acquisition is not tied to the rate at which the data can be processed. Therefore if on average the
processing is quicker than the acquisition, but occasionally a frame takes longer to process, the acquisition will
still continue and not lose data.

• The libraries can sleep whilst waiting for events to occur and therefore free system resources for other tasks.

Although the callbacks method can be used with both single capture and sequence modes, it is generally used with
sequence mode for faster acquisition and processing speeds.

LINE SCAN MODE

Line scan cameras only capture one line of data at a time, but this line is generally long compared with area scan
cameras, for instance a typical line scan image might be 2048 pixels by 1 line. Line scan cameras generally use
RS-422 synchronous control signals, and the timing of these signals varies between cameras. Therefore specific
cameras are supported, and Snapper-24 is set up for a camera by calling SNP24_initialize with the camera model as
a parameter. Cameras which are not supported by SNP24_initialize can be set up from the application by direct calls
to low level line scan control functions - see the list in section “Function List”.

It is expected that line scan applications will use sequence mode to allow continuous capture of lines. Snapper-24
can be set to capture a given number of lines in one bank before switching to the other bank (function
SNP24_set_ROI). At a minimum, one line can be captured per bank - this gives minimum latency between a line
being captured and it being ready for processing in host computer memory, but there will be a higher software
overhead. The maximum number of lines per bank depends on the programmable ROI width being captured and the
fixed bank size. A large number of lines gives a low processing overhead, but a larger latency. Typical values might
be 32 or 64 lines per bank.

Most of the Snapper-24 library functions can be used for both area scan and line scan modes. Where a function can
only be used in one mode this is mentioned in the BUGS/ NOTES section of each function description.

See the Camera Specific Installation Notes in the Installation section of the manual for the cable pinouts for
supported line scan cameras.

IMPORTANT: Line scan mode on Snapper-24 is not supported in this release of software.

Snapper-24 Programmer’s Manual v4.0.1 Function Overview 4

Function Overview

The functions are split into five sections - Initialization, Image Capture, Configuration, Parameter Readback, and
Miscellaneous.

INITIALIZATION FUNCTION

The initialization function configures Snapper-24 to default settings. It accepts a parameter indicating the format or
model of camera which is connected so that Snapper-24 is configured for that camera.

IMAGE CAPTURE FUNCTIONS

The image capture functions control capture of images and provide functions to test the capture status.

The SNP24_capture function controls the capture of video data into Snapper-24’s video memory.
SNP24_read_video_data reads the data from Snapper-24’s video memory into an image structure in host memory.
This image structure is set up by SNP24_set_image. SNP24_reset_read_pointer allows the data to be read again.
Capture status is indicated by SNP24_is_50Hz, SNP24_is_capture_complete, SNP24_is_data_ready,
SNP24_is_field1_captured, SNP24_is_field1_incoming, SNP24_is_locked, SNP24_is_sequence_dropped,
SNP24_is_sequence_mode, SNP24_is_trigger_started and SNP24_is_vsync_asserted.

CONFIGURATION FUNCTIONS

These functions control the configuration of the Snapper-24.

The capture mode used by the next SNP24_capture call is controlled by SNP24_set_capture. This allows control of
the frame/field mode and sub-sample factor. Image capture can be triggered from external hardware by using the
SNP24_set_trigger function. Selected regions of the image can be captured by a call to SNP24_set_ROI.

The video source to be digitized is controlled by SNP24_set_video_src and SNP24_set_format. The analogue levels
at the input to the ADCs are controlled by SNP24_set_levels, and the LUTs on the output of the ADCs are controlled
by SNP24_set_LUTs.

SNP24_set_sync selects the sync source, and SNP24_set_timer allows timed pulses to be supplied to the camera to
control for example exposure time.

Interrupt control of acquisition is possible using SNP24_set_interrupts and SNP24_set_callback.

The remaining functions will not get called in a typical application because they are called by SNP24_initialize with
the correct settings for the camera. These functions are SNP24_lm1882_prog, SNP24_set_active_area,
SNP24_set_clamp, SNP24_set_clk, SNP24_set_ctrlout, SNP24_set_linescan_ctrl, SNP24_set_linescan_freq,
SNP24_set_pix_per_line, SNP24_set_ROI_rounding, SNP24_set_TTL422 and SNP24_set_video_standard.

PARAMETER READBACK FUNCTIONS

Some of these functions are intended to avoid the need for an application to keep shadow copies of Snapper-24
settings. These are SNP24_get_active_area, SNP24_get_levels, SNP24_get_LUTs, SNP24_get_ROI and
SNP24_get_subsample.

SNP24_get_ROI_max returns maximum settings for the camera in use, and SNP24_get_property returns hardware
and firmware information about the Snapper-24.

SNP24_get_ID which shows whether a Snapper-8 or Snapper-24 is connected, and SNP24_get_rev which returns the
hardware revision of the Snapper-24 in use.

Finally SNP24_get_parameter returns general information about the Snapper-24.

MISCELLANEOUS FUNCTIONS

SNP24_auto_gain and SNP24_auto_offset allow the brightness of an image to be set automatically.

Snapper-24 Programmer’s Manual v4.0.1 Error Returns 5

Error Returns

All of the Snapper-24 library functions return a Terr apart from several Boolean functions. Terr is a 32 bit unsigned
integer, with the bit positions defined as follows:

31 to 24 Hardware identifier/revision (returned on error, otherwise 0 is returned). This is used to allow a top
level calling function to determine the library in which the error occurred, and is actually read from the
hardware itself.

Clearing bits 26 to 24 leaves the hardware identifier, which is:
on Snapper-24 - 0xB0 (#defined as SNP24_FAMILY_ID)
on Snapper-8 - 0xB8 (#defined as SNP8_FAMILY_ID).

Bits 26 to 24 give the hardware revision level. Initial Snapper-24s have the value 0x00.

23 to 16 Error number, otherwise 0 if no error.

15 to 0 Function return value.

If a function call is successful, it returns ASL_OK (which is #defined as 0) or the requested parameter. If an error
occurs, an error number is returned in bits 23 to 16 along with the hardware or library identifier in bits 31 to 24. See
the “Snapper Error Handling Programmer’s Manual” in the Developer’s Guide section of the Snapper Developer’s
Manual for more details on error returns.

Snapper-24 Programmer’s Manual v4.0.1 Sample Applications 6

Sample Applications

The following examples show a minimal program, a sequence mode example, and a callbacks code fragment. As
with all sample code in this manual, error handling has been omitted for clarity, but apart from not handling errors
cleanly these are usable programs. The Snapper SDK includes sample applications, both as executables and as
source code, which provide a useful reference of ‘real’ code and are probably the best starting point for developing
custom applications. For examples of how to display images under different operating systems see the examples in
the TMG Library Programmer’s Manual.

MINIMAL PROGRAM

The following code is a minimal program to capture an image from a RGB CCIR camera using a Snapper-24 and
save it to a file:

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hsnp24; /* Handle to Snapper-24 */
 Thandle Hbase; /* Handle to baseboard */
 Thandle Hvid_image; /* Handle to captured image */
 Thandle Hrgb24_image; /* Handle to RGB24 image for TIFF write */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hsnp24 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();
 Hrgb24_image = TMG_image_create();

 /* Set required Snapper mode */
 SNP24_initialize(Hsnp24, SNP24_CCIR_DEFAULT);

 /* Set up image parameters */
 SNP24_set_image(Hsnp24, Hvid_image);

 /* Capture image */
 SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
 SNP24_read_video_data(Hsnp24, Hvid_image, TMG_RUN);

 /* Write image as a TIFF file, so first convert it to RGB24 format */
 TMG_image_convert(Hvid_image, Hrgb24_image, TMG_RGB24, 0, TMG_RUN);
 TMG_image_set_outfilename(Hrgb24_image, "rgb24.tif");
 TMG_image_write(Hrgb24_image, TMG_NULL, TMG_TIFF, TMG_RUN);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Snapper-24 Programmer’s Manual v4.0.1 Sample Applications 7

SEQUENCE MODE EXAMPLE

The following code shows how to use sequence mode to capture images from a RGB EIA camera using a
Snapper-24:

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hsnp24, Hbase, Hvid_image; /* Handles to Snapper-24, baseboard & image */
 Tboolean finished = FALSE; /* Controls when to stop sequence capture */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hsnp24 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();

 /* Set required Snapper mode, including selecting sequence mode */
 SNP24_initialize(Hsnp24, SNP24_EIA_DEFAULT);
 SNP24_set_capture(Hsnp24, SNP24_SEQUENCE_MODE);
 SNP24_set_image(Hsnp24, Hvid_image);

 /* Start continuous capture of images - first prepare SNP24_read_video_data
 * to receive data, then start the actual capture
 */
 SNP24_read_video_data(Hsnp24, Hvid_image, TMG_INIT);
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);

 /* Now continuously read in the data as it is captured */
 while (finished == FALSE)
 {
 /* Wait for an image to arrive in video memory */
 while (SNP24_is_data_ready(Hsnp24) == FALSE)
 {}

 /* Now read the image */
 SNP24_read_video_data(Hsnp24, Hvid_image, TMG_STRIP);

 /* Process or display the image - here an imaginary image processing routine
 * is called - to use the example replace this line with some real code
 */
 finished = process_image(Hvid_image);
 TMG_image_set_flags(Hvid_image, TMG_LOCKED, TRUE); /* Speed up loop */
 }

 /* Stop the continuous capturing, then inform SNP24_read_video_data
 * that no more data will be read in this continuous capture
 */
 SNP24_capture(Hsnp24, SNP24_END_SEQUENCE);
 SNP24_read_video_data(Hsnp24, Hvid_image, TMG_RESET);

 /* Finally free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Snapper-24 Programmer’s Manual v4.0.1 Sample Applications 8

SEQUENCE MODE CODE FRAGMENT – USING CALLBACKS

The following code shows how to use callbacks with sequence mode to capture images from a RGB EIA camera
using a Snapper-24:

/* Global structure to contain all required info */
struct MyInfo
{
 Thandle Himages[NUM_BUFFERS];
 ui32 dwProcessBuffer;
 ui32 dwAcquisitionBuffer;
}

/* Setup Snapper-24 as appropriate */
SNP24_set_capture(Hsnp24, SNP24_SEQUENCE_MODE);
…
/* Initialise the required image buffers */
for (dwBuffer = 0; dwBuffer < NUM_BUFFERS; dwBuffer++)
{
 SNP24_set_image(Hsnp24, MyInfo.Himages[dwBuffer]);
 SNP24_read_video_data(Hsnp24, MyInfo.Himages[dwBuffer], TMG_INIT);
 TMG_image_set_flags(MyInfo.Himages[dwBuffer], TMG_LOCKED, TRUE);
}

/* Install the interrupt handler and enable the appropriate interrupt */
SNP24_set_callback(Hsnp24, SNP24_CALLBACK_SET, MyCallback, &MyInfo);
SNP24_set_interrupts(Hsnp24, SNP24_INT_DATA_READY, TRUE);

/* Start interrupt driven acquisition */
SNP24_capture(Hsnp24, START_AND_RETURN);

/* This main program thread now waits on a semaphore and then processes the
 * images when signalled from the interrupt handler.
 */

MyInfo.dwProcessBuffer = 0;
while (!bFinished) /* A global could be used to signal when finished */
{
 /* Wait until image has been acquired into host memory */
 WaitForSingleObject(hSemaImageReady, 500); /* Win32 API */

 /* Process image */
 ProcessImage(&MyInfo);
 SelectNextProcessBuffer(&MyInfo);
}

/* Disable interrupt handler */
SNP24_set_callback(Hsnp24, SNP24_CALLBACK_INIT, NULL, NULL);
SNP24_capture(Hsnp24, SNP24_END_SEQUENCE);

The interrupt handler, called on image acquisition complete (i.e. image data acquired into on-board memory),
then reads out the image data from Snapper and signals to the processing thread.

/* This is our interrupt handler */
void InterruptHandler(Thandle Hsnp24, ui32 dwIntSrc, void *pMyData)
{
 struct MyInfo *pMyInfo = (struct MyInfo *) pMyData;
 Thandle hThisImage = pMyInfo->Himages[pMyInfo->dwAcquisitionBuffer];

 SNP24_read_video_data(Hsnp24, hThisImage, TMG_STRIP);
 SelectNextAcquisitionBuffer(pMyInfo);
 ReleaseSemaphore(hSemaImageReady, 1, NULL); /* Win32 API */
}

Snapper-24 Programmer’s Manual v4.0.1 Function List 9

Function List

Functions Supported In All Modes Functions Supported In Some Modes

INITIALIZATION FUNCTION A = AREA SCAN L = LINE SCAN

SNP24_initialize

IMAGE CAPTURE FUNCTIONS

SNP24_capture
SNP24_is_capture_complete
SNP24_is_data_ready
SNP24_is_sequence_dropped
SNP24_is_sequence_mode
SNP24_is_trigger_started
SNP24_read_video_data
SNP24_reset_read_pointer
SNP24_set_image

A
A
A
A
A

SNP24_is_50Hz
SNP24_is_field1_captured
SNP24_is_field1_incoming
SNP24_is_vsync_asserted
SNP24_is_locked

CONFIGURATION FUNCTIONS

SNP24_set_active_area
SNP24_set_capture
SNP24_set_clamp
SNP24_set_clk
SNP24_set_format
SNP24_set_levels
SNP24_set_LUTs
SNP24_set_parameter
SNP24_set_ROI
SNP24_set_ROI_rounding
SNP24_set_timer
SNP24_set_trigger
SNP24_set_TTL422
SNP24_set_video_src
SNP24_set_video_standard

A
A
L
L
A
A

SNP24_lm1882_prog
SNP24_set_ctrlout
SNP24_set_linescan_ctrl
SNP24_set_linescan_freq
SNP24_set_pix_per_line
SNP24_set_sync

PARAMETER READBACK FUNCTIONS

SNP24_get_active_area
SNP24_get_ID
SNP24_get_levels
SNP24_get_LUTs
SNP24_get_parameter
SNP24_get_property
SNP24_get_rev
SNP24_get_ROI
SNP24_get_ROI_max
SNP24_get_subsample

Snapper-24 Programmer’s Manual v4.0.1 Function List 10

MISCELLANEOUS FUNCTIONS

SNP24_set_callback
SNP24_set_interrupts

A
A

SNP24_auto_gain
SNP24_auto_offset

The functions are described in alphabetical order in the following pages.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_auto_gain 11

SNP24_auto_gain

USAGE

Terr SNP24_auto_gain(Thandle Hsnp24, ui8 percent_clip)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

percent_clip Percentage of image allowed to overshoot peak white.

DESCRIPTION

This function is used to automatically set the white level of the image. It does this by capturing one image,
and analysing it to produce a new white level, which it then sets. The white level is chosen to make
percent_clip percentage of the image overshoot peak white. For typical images a percent_clip value between
1 and 5 is recommended, but values between 1 and 99 are accepted by the routine.

RETURNS

The function returns the new white level. It can return the following error codes:

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_OUT_OF_RANGE The percentage passed is not between 1 and 99.

It can also return error returns from other SNP24 and TMG functions it calls.

EXAMPLES

See SNP24_auto_offset.

BUGS / NOTES

Note that as the function captures one image using the existing capture mode, if external trigger is enabled a
trigger event is needed before the function will return. Also, the board must have been initialized before the
function is called, otherwise the associated SNP24_capture call will fail. Similarly, if the function is called
immediately after selecting a new video source the hardware may not have locked to the new source, again
causing SNP24_capture to fail. If a sequence mode capture is in progress the function will ‘steal’ four images
from the sequence.

A limitation when using an RGB source is that the peak level in the image should be near white, otherwise a
greater percentage of the image will be clipped to white than requested (i.e. it is not sufficient to have an
image which has full intensity red, green, or blue on their own). An ideal test image for both this function and
SNP24_auto_offset would be half black and half white. Also note that the image captured by this function
will have passed through the currently installed LUTs.

The function adjusts the white level relative to the current setting of black level, therefore the black level
should be set (typically to default, or using SNP24_auto_offset) before calling this function.

This function is not supported for line scan cameras, and is not supported if sequence mode is selected, but no
sequence capture is in progress.

SEE ALSO

SNP24_auto_offset, SNP24_set_levels.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_auto_offset 12

SNP24_auto_offset

USAGE

Terr SNP24_auto_offset(Thandle Hsnp24, ui8 percent_clip)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

percent_clip Percentage of image allowed to undershoot black.

DESCRIPTION

This function is used to automatically set the black level of the image. It does this by capturing one image,
and analysing it to produce a new black level, which it then sets. The black level is chosen to make
percent_clip percentage of the image undershoot black. For typical images a percent_clip value between 1
and 5 is recommended, but values between 1 and 99 are accepted by the routine.

RETURNS

The function returns the new black level. It can return the following error codes:

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_OUT_OF_RANGE The percentage passed is not between 1 and 99.

It can also return error returns from other SNP24 and TMG functions it calls.

EXAMPLES

The following code will set white, clamp and YCbCr to default levels, then automatically set black and white
levels so that 5% of the current image undershoots black and 5% overshoots peak white:

SNP24_set_levels(Hsnp24, SNP24_LVL_INIT, levels);
SNP24_auto_offset(Hsnp24, 5);
SNP24_auto_gain(Hsnp24, 5);

BUGS / NOTES

Note that as the function captures one image using the existing capture mode, if external trigger is enabled a
trigger event is needed before the function will return. Also, the board must have been initialized before the
function is called, otherwise the associated SNP24_capture call will fail. Similarly, if the function is called
immediately after selecting a new video source the hardware may not have locked to the new source, again
causing SNP24_capture to fail. If a sequence mode capture is in progress the function will ‘steal’ four images
from the sequence.

The function adjusts the black level relative to the current setting of clamp level, therefore the clamp level
should be set (typically to default) before calling this function. If both SNP24_auto_offset and
SNP24_auto_gain are called, it is recommended that SNP24_auto_offset is called first. Also note that the
image captured by this function will have passed through the currently installed LUTs.

This function is not supported for line scan cameras, and is not supported if sequence mode is selected, but no
sequence capture is in progress.

SEE ALSO

SNP24_auto_gain, SNP24_set_levels.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_capture 13

SNP24_capture

USAGE

Terr SNP24_capture(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required capture mode.

DESCRIPTION

This function is used to initiate a video capture on Snapper-24. The module must be configured with the
required video data source, trigger source, sync source, clock source, etc, before this routine is called.

MODE

SNP24_START_AND_WAIT The function does not return until capture is complete, including
waiting for an external trigger if selected. This parameter is not
supported when sequence capture is used. When external trigger is
enabled the function returns after a timeout period if no trigger
occurs.

SNP24_START_AND_RETURN The capture is initiated and control immediately returns to the
calling function. The controlling program must call
SNP24_is_capture_complete to determine when the captured has
completed. This mode allows the time taken by the hardware to
store the video data to be used by the software to perform other
processing. This method is useful in multitasking systems, or when
the capture and display rate must be optimized. In line scan mode
this parameter must always be used to start a capture.

SNP24_START_AND_RETURN_TRIG This is similar to SNP24_START_AND_RETURN; it runs slightly
faster but can cause image breakup on slow systems. It is generally
used with triggered acquisition.
In this mode, a second capture is armed before the current image
has been read by a call to SNP24_read_video_data. This allows
the hardware to start acquisition of the second image during the
time to read out the current image, which can increase the
acquisition rate. However if the incoming video rate is faster than
the readout rate, or the time to start the readout is too large, then
the current image will be corrupted by data from the subsequent
image.

SNP24_END_SEQUENCE A capture in sequence mode (previously started by
SNP24_START_AND_RETURN) will be terminated on completion
of acquisition of the current image.

SNP24_ABORT_CAPTURE A capture previously started by SNP24_START_AND_RETURN
will be terminated immediately.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_capture 14

ASLERR_NOT_SUPPORTED SNP24_START_AND_WAIT was requested in sequence mode.

ASLERR_TIMEOUT The capture timed out. There are two possible causes:
A trigger event did not occur within the timeout period although the trigger
input is enabled, or
The required number of pixels were not acquired within the timeout period
probably due to the hardware not being locked to the video source.

EXAMPLES

The following code will capture a single image before processing the acquired data:

while (DisplayLive == TRUE)
{
 SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
 SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);
 process_image(hImage, ...);
}

The following code will process one image whilst acquiring the next, which is a more efficient use of
processing resources.

SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
while (DisplayLive == TRUE)
{
 while (SNP24_is_capture_complete(Hsnp24) == FALSE)
 {}
 SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
 process_image(hImage, ...);
}

 The following code will start image acquisition before the current image is read, which can improve
acquisition rates but at the risk of image corruption on slow systems.

SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
while (DisplayLive == TRUE)
{
 while (SNP24_is_capture_complete(Hsnp24) == FALSE)
 {}
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN_TRIG);
 SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);
 process_image(hImage, ...);
}

BUGS / NOTES

If timeouts are required for capture it is recommended that they are controlled within the application by using
the SNP24_START_AND_RETURN parameter together with the clock functions available within the
operating system in use.

SEE ALSO

SNP24_set_capture, SNP24_is_capture_complete, SNP24_is_sequence_dropped,
SNP24_is_sequence_mode, SNP24_is_trigger_started, SNP24_set_trigger.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_active_area 15

SNP24_get_active_area

USAGE

Terr SNP24_get_active_area(Thandle Hsnp24, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the active area as set by the most recent call to SNP24_set_active_area and returns it in
the roi array.

For conventional area scan cameras the pixel referenced by ASL_ROI_X_START and ASL_ROI_Y_START is
subsequently used by the ROI functions as pixel [0,0].

In line scan mode ASL_ROI_Y_START is not used, and is returned set to 0. Similarly ASL_ROI_Y_LENGTH
is returned set to 1. The pixel referenced by ASL_ROI_X_START is used by the ROI functions as pixel 0.

All the coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones. The horizontal
and vertical resolutions are 1 pixel and 1 line respectively.

RETURNS

This function returns the current ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

To display the active area:

SNP24_get_active_area(Hsnp24, roi);
printf(“\nActive area X start is %d”, (int)roi[ASL_ROI_X_START]);
printf(“\nActive area Y start is %d”, (int)roi[ASL_ROI_Y_START]);
printf(“\nActive area X length is %d”, (int)roi[ASL_ROI_X_LENGTH]);
printf(“\nActive area Y length is %d”, (int)roi[ASL_ROI_Y_LENGTH]);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_active_area, SNP24_get_ROI, SNP24_get_ROI_max, SNP24_set_ROI.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_ID 16

SNP24_get_ID

USAGE

Terr SNP24_get_ID(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function returns the hardware identifier of the Snapper, so that an application can check whether it is
running on a Snapper-8 or a Snapper-24.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

The following code sets the format to ‘Y8 on blue’ for a Snapper-24, or ‘Y8 on red’ for a Snapper-8:

if (SNP24_get_ID(Hsnp24) == SNP24_ID)
 SNP24_set_format(Hsnp24, SNP24_FORMAT_Y8_ON_BLU);
else if (SNP24_get_ID(Hsnp24) == SNP8_ID)
 SNP24_set_format(Hsnp24, SNP24_FORMAT_Y8_ON_RED);
else
 /* Error - should never get here */

BUGS / NOTES

The <ID> (either SNP24_ID or SNP8_ID) is returned in the lower 8 bits, if successful.

There are no known bugs.

This function is included for compatibility with existing applications. All new applications should use
SNP24_get_parameter.

SEE ALSO

SNP24_get_parameter, SNP24_get_rev.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_levels 17

SNP24_get_levels

USAGE

Terr SNP24_get_levels(Thandle Hsnp24, ui8 levels[SNP24_LVL_MAX_LEVELS])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

levels An array of four elements for the current levels to be returned in. The elements are:

levels[SNP24_LVL_WHITE], levels[SNP24_LVL_BLACK], levels[SNP24_LVL_CLAMP],
levels[SNP24_LVL_YCBCR].

DESCRIPTION

This function returns the current values of the analogue levels at the input to the ADCs, as set by the most
recent call to SNP24_set_levels.

SNAPPER-8 DIFFERENCES

The Snapper-8 does not allow adjustment of the clamp level. On a Snapper-8 levels[SNP24_LVL_CLAMP]
is always returned as SNP24_LVL_CLAMP_INIT.

RETURNS

This function returns the current values in the levels[] array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

The following code will change the black level, leaving the rest unchanged:

ui8 levels[SNP24_LVL_MAX_LEVELS];
ui8 black_level;
...
SNP24_get_levels(Hsnp24, levels);
levels[SNP24_LVL_BLACK] = black_level;
SNP24_set_levels(Hsnp24, SNP24_LVL_SET, levels};

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_levels.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_LUTs 18

SNP24_get_LUTs

USAGE

Terr SNP24_get_LUTs(Thandle Hsnp24, int sel252, ui8 lut[SNP24_SIZE_LUT252])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

sel252 Which channel to read.

lut An array of 256 elements for the required LUT.

DESCRIPTION

This function returns the current values in the look up table (LUT) between the output of the ADC and the
input of the frame store, as set by the most recent call to SNP24_set_LUTs.

SEL252 OPTIONS

This controls which of the three LUTs for the red, green and blue channels are affected by this call. The
parameter can be one of SNP24_252_RED, SNP24_252_GRN or SNP24_252_BLU.

SNAPPER-8 DIFFERENCES

On a Snapper-8 sel252 must be SNP24_252_RED.

RETURNS

This function returns the current values in the lut[] array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM All LUTs have been requested simultaneously, ie sel252 has been set to
SNP24_252_ALL.

ASLERR_PARAM_CONFLICT More than one mode parameter has been passed in, which is not allowed
because the parameters are mutually exclusive.

ASLERR_NOT_SUPPORTED A Snapper-8 is being used, and sel252 has been set to SNP24_252_GRN or
SNP24_252_BLU.

EXAMPLES

The following code will get the red LUT:

ui8 lut[SNP24_SIZE_LUT252]
SNP24_get_LUTs(Hsnp24, SNP24_252_RED, lut);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_LUTs

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_parameter 19

SNP24_get_parameter

USAGE

Terr SNP24_get_parameter(Thandle Hsnp24, ui16 parameter)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

parameter The parameter to return.

DESCRIPTION

This function returns various parameters from the internal structure associated with the Snapper-24 handle.

PARAMETER

SNP24_BASEBOARD_HANDLE The handle to the baseboard which the Snapper-24 is fitted on.
Type (ui32).

SNP24_TIMEOUT_TRIGGER This returns the timeout value in milliseconds for the period from
when SNP24_capture is called to when the trigger is received.
Type (ui32).

SNP24_SUPPORTED_FORMAT This returns the output data format of the Snapper, ie 24 bit for
Snapper-24, 8 bit for early Snapper-8 and 16 bit for later
Snapper-8 which support data pre-packing for improved transfer
rates over the host bus. Type (ui16).

SNP24_MAPPER_INTERFACE_TYPE This is used as part of the initialisation code (see
SNP24_initialize) to determine which Mapper type is fitted.
After initialisation is complete, it is not required again. Type
(ui16).

SNP24_ID_VALUE This returns the ID as read from the hardware, which
distinguishes between all the different Snapper-24 and Snapper-8
variants. Type (ui8).

SNP24_REV_VALUE This returns the board revision as read from the hardware, which
distinguishes between the different hardware revisions of the
Snapper. Type (ui8).

SNP24_IDREV_VALUE This returns the ID and board revision as read from the hardware,
which distinguishes between the different hardware revisions of
the different Snapper variants. Type (ui8).

SNP24_FAMILY_VALUE This returns either SNP24_FAMILY_ID or SNP8_FAMILY_ID,
which distinguishes between Snapper-24 and Snapper-8 variants
but not between individual boards or specific revision levels.
Type (ui8).

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The parameter value is invalid.

ASLERR_NOT_RECOGNIZED The ID value read back from the Snapper hardware is not recognized.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_parameter 20

EXAMPLES

The following example checks user input against the Snapper family to determine whether the hardware
supports the request.

if ((SNP24_get_parameter(Hsnp24, SNP24_FAMILY_VALUE) != SNP24_FAMILY_ID) &&
 (UserInput == Acquire24Bits))
{
 /* Flag an error, as Snapper-8’s do not support 24 bit acquisition */
}

BUGS / NOTES

The function returns a type Terr (ui32 - an unsigned 32 bit integer). Therefore a cast may be need depending
on the parameter type (given above for each parameter).

There are no known bugs.

SEE ALSO

SNP24_get_property, SNP24_set_parameter.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_property 21

SNP24_get_property

USAGE

Terr SNP24_get_property(Thandle Hsnp24, char *property, char *value)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

property A character string or name of the property to access.

value The property result string. (Must point to a buffer of at least 16 bytes.)

DESCRIPTION

This function returns various property strings associated with Snapper-24.

PROPERTY

“fpgadate” Snapper FPGA Date: This retrieves the date and time string associated with current control
FPGA file in use. It is unlikely that this function will ever be needed, but it can be useful to
detect old versions of Snapper control FPGA information. (i.e. the date string is used as a
revision level). The format of the returned date string is dd-mmm-yy hh:mm.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The property value is invalid.

EXAMPLES

To print the FPGA date:

char string[256];

SNP24_get_property(Hsnp24, “fpgadate”, string);
printf(“Snapper-24 FPGA date: %s”, string);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_get_parameter.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_rev 22

SNP24_get_rev

USAGE

Terr SNP24_get_rev(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function returns the hardware revision level of the Snapper.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

if (SNP24_get_rev(Hsnp24) == 0)
 printf(“\nRunning on issue 1 Snapper-24”);
else if (SNP24_get_rev(Hsnp24) == 1)
 printf(“\nRunning on issue 2 Snapper-24”);

BUGS / NOTES

The <rev> is returned in the lower 8 bits, if successful.

There are no known bugs.

This function is included for compatibility with existing applications. All new applications should use
SNP24_get_parameter.

SEE ALSO

SNP24_get_parameter, SNP24_get_ID.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_ROI 23

SNP24_get_ROI

USAGE

Terr SNP24_get_ROI(Thandle Hsnp24, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the current ROI (Region of Interest) and returns it in the roi array.

The top left corner of the image is defined by the ASL_ROI_X_START and ASL_ROI_Y_START values and
the image size defined with the ASL_ROI_X_LENGTH and ASL_ROI_Y_LENGTH values. All the
coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones.

In line scan mode ASL_ROI_Y_START is always 0, and ASL_ROI_Y_LENGTH is the number of lines which
get captured per bank.

RETURNS

This function returns the current ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

To display the current ROI:

SNP24_get_ROI(Hsnp24, roi);
printf(“\nROI X start is %d”, (int)roi[ASL_ROI_X_START]);
printf(“\nROI Y start is %d”, (int)roi[ASL_ROI_Y_START]);
printf(“\nROI X length is %d”, (int)roi[ASL_ROI_X_LENGTH]);
printf(“\nROI Y length is %d”, (int)roi[ASL_ROI_Y_LENGTH]);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_ROI, SNP24_get_ROI_max, SNP24_set_active_area.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_ROI_max 24

SNP24_get_ROI_max

USAGE

Terr SNP24_get_ROI_max(Thandle Hsnp24, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the maximum usable ROI (Region of Interest) for the camera in use and returns it in the
roi array.

The maximum size is defined by the ASL_ROI_X_LENGTH and ASL_ROI_Y_LENGTH values, so the
ASL_ROI_X_START and ASL_ROI_Y_START values are always returned as ‘0’. The coordinates are based
upon raw image sizes in pixels and lines, not sub-sampled ones.

For conventional area scan cameras the values returned are calculated from the information passed to
SNP24_set_active_area.

In line scan mode ASL_ROI_Y_START is always 0, and the coordinate ASL_ROI_Y_LENGTH is the
maximum number of lines which can be captured into one memory bank on the Snapper assuming that the full
line is captured. This is calculated from the full width of the line (from the information passed to
SNP24_set_active_area) and the size of the memory bank.

RETURNS

This function returns the maximum ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

To set the maximum allowable ROI:

SNP24_get_ROI_max(Hsnp24, roi);
SNP24_set_ROI(Hsnp24, SNP24_ROI_SET, roi);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_get_ROI, SNP24_set_ROI, SNP24_set_active_area.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_get_subsample 25

SNP24_get_subsample

USAGE

Terr SNP24_get_subsample(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function returns the current sub-sample factor, as set by SNP24_set_capture.

RETURNS

This function returns the sub-sample ratio, i.e. SNP24_SUB_X1, SNP24_SUB_X2, SNP24_SUB_X4,
SNP24_SUB_X8, SNP24_SINGLE_FIELD, or SNP24_SUB_X1_FIELD_DUPLICATE.

Possible error codes:

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

if (SNP24_get_subsample(Hsnp24) == SNP24_SUB_X2)
 printf(“\Currently using times 2 sub-sample”);
else if (SNP24_get_subsample(Hsnp24) == SNP24_SUB_X4)
 printf(“\Currently using times 4 sub-sample”);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_capture.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_initialize 26

SNP24_initialize

USAGE

Terr SNP24_initialize(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required initialization mode.

DESCRIPTION

This function is used to initialize the Snapper-24 module to the required settings for the camera in use.

It makes calls to SNP24_set_active_area, SNP24_set_callback, SNP24_set_capture, SNP24_set_clamp,
SNP24_set_clk, SNP24_set_format, SNP24_set_interrupts, SNP24_set_levels, SNP24_set_LUTs,
SNP24_set_ROI, SNP24_set_ROI_rounding, SNP24_set_trigger, SNP24_set_TTL422, SNP24_set_video_src
and SNP24_set_video_standard. Depending on whether the camera in use is area scan or line scan it also
makes calls to some of SNP24_set_ctrlout, SNP24_set_linescan_ctrl, SNP24_set_linescan_freq,
SNP24_set_sync. See the supplied source of SNP24_initialize in “snp24ini.c” to see which modes are set for
each camera.

MODE

SNP24_CCIR_DEFAULT This should be used for a standard area scan camera with CCIR timing, i.e.
768 by 576 image size.

For a Snapper-24 this sets up RGB capture to a TMG_RGBX32 image,
with sync off video. For a Snapper-8 this sets up mono capture to a
TMG_Y8 image, with sync off video. The captured image is a full frame
which has not been subsampled.

SNP24_EIA_DEFAULT This should be used for a standard area scan camera with EIA (RS-170)
timing, i.e. 640 by 480 image size.

For a Snapper-24 this sets up RGB capture to a TMG_RGBX32 image,
with sync off video. For a Snapper-8 this sets up mono capture to a
TMG_Y8 image, with sync off video. The captured image is a full frame
which has not been subsampled.

SNP24_CUSTOM_LINESCAN This should be used when using a linescan camera which is not listed above.
The function still initializes the Snapper-24 in line scan mode, but does not
call the functions listed above. Instead the application must call all these
functions with the appropriate setting for the camera in use.

Note that all line scan cameras, including the mode SNP24_CUSTOM_LINESCAN, put the Snapper-24 into
“line scan mode”. See the Concepts section of this manual for more details.

See the release notes for details of additional cameras supported.

RETURNS

This function will either return ASL_OK or an error value from one of the lower level function calls listed
above.

EXAMPLES

SNP24_initialize(Hsnp24, SNP24_CCIR_DEFAULT);

Snapper-24 Programmer’s Manual v4.0.1 SNP24_initialize 27

BUGS / NOTES

IMPORTANT : Line scan mode is not supported in this release of software.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_50Hz 28

SNP24_is_50Hz

USAGE

Tboolean SNP24_is_50Hz(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether the current sync source is CCIR (50Hz frame rate) or EIA (60Hz frame
rate).

RETURNS

This function returns either TRUE (for 50Hz) or FALSE (for 60Hz).

EXAMPLES

if (SNP24_is_50Hz() == TRUE)
 SNP24_set_video_standard(Hsnp24, SNP24_CCIR_DEFAULT);
else
 SNP24_set_video_standard(Hsnp24, SNP24_EIA_DEFAULT);

BUGS / NOTES

The function is not supported in line scan mode.

The function actually compares if the number of lines per field is greater or less than 256.

SEE ALSO

SNP24_set_video_standard, SNP24_set_clk, SNP24_set_sync.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_capture_complete 29

SNP24_is_capture_complete

USAGE

Tboolean SNP24_is_capture_complete(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether the current video capture has completed. It returns FALSE from the time
that a capture is initiated with SNP24_capture until there is valid data in the video memory. FALSE is also
returned after the capture has been initiated, but before a valid external trigger has occurred. TRUE is
returned at all other times.

In sequence mode this function always returns TRUE because capture is continuously occurring.

RETURNS

This function returns either TRUE (for capture completed) or FALSE (for capture not yet completed).

EXAMPLES

The following code initiates a capture, then processes the previous frame whilst capturing the next, and then
waits for the capture to complete before reading the new frame:

SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
while (DisplayLive == TRUE)
{
 while (SNP24_is_capture_complete(Hsnp24) == FALSE)
 {}
 SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
 process_image(Himage, ...);
}
SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_capture, SNP24_is_data_ready, SNP24_is_field1_captured, SNP24_is_trigger_started.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_data_ready 30

SNP24_is_data_ready

USAGE

Tboolean SNP24_is_data_ready(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether data is available to be read from Snapper-24. It returns TRUE whenever
there is data to be read by SNP24_read_video_data, and FALSE when data is not yet ready.

It is most useful in sequence mode to tell when a memory bank has just been filled and is ready to read.

RETURNS

This function returns either TRUE (for data ready) or FALSE (for data not yet ready).

EXAMPLES

The following code can be used in sequence mode, and initiates a sequence capture, then uses
SNP24_is_data_ready to control when SNP24_read_video_data can be called.

SNP24_read_video_data(Hsnp24, Hvid_image, TMG_INIT);
SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
while (DisplayLive == TRUE)
{
 while (SNP24_is_data_ready(Hsnp24) == FALSE)
 {}
 SNP24_read_video_data(Hsnp24, Himage, TMG_STRIP);
 process_image(Himage, ...);
}

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_capture, SNP24_is_capture_complete, SNP24_is_field1_captured, SNP24_is_trigger_started.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_field1_captured 31

SNP24_is_field1_captured

USAGE

Tboolean SNP24_is_field1_captured(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to determine whether field 1 or field 2 of a frame was captured in video memory. This
is only valid if the mode SNP24_START_NEXT_FIELD is selected in SNP24_set_capture.

RETURNS

This function returns either TRUE (for field 1 captured) or FALSE (for field 2 captured).

BUGS / NOTES

The function is not supported in line scan mode.

There are no known bugs.

SEE ALSO

SNP24_is_capture_complete, SNP24_set_capture, SNP24_is_field1_incoming.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_field1_incoming 32

SNP24_is_field1_incoming

USAGE

Tboolean SNP24_is_field1_incoming(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to determine whether the selected video source is currently generating field 1 or field 2.

RETURNS

This function returns either TRUE (for field 1 present) or FALSE (for field 2 present).

BUGS / NOTES

The function is not supported in line scan mode.

There are no known bugs.

SEE ALSO

SNP24_is_field1_captured.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_locked 33

SNP24_is_locked

USAGE

Tboolean SNP24_is_locked(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to determine whether the Snapper-24 is locked to the selected video source. If the
Snapper is not locked, then an incorrect sync source is selected or the camera may not be correctly connected.

RETURNS

This function returns either TRUE (for field 1 present) or FALSE (for field 2 present).

BUGS / NOTES

The function is not supported in line scan mode.

There are no known bugs.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_sequence_dropped 34

SNP24_is_sequence_dropped

USAGE

Tboolean SNP24_is_sequence_dropped(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used during or after a sequence mode capture to check whether a continuous (i.e. real time)
sequence was captured, or if Snapper-24 had to drop incoming data because the software reading and
processing the images could not keep up.

The flag is set to FALSE at the time that a sequence capture is initiated. It will remain FALSE until the
Snapper-24 hardware cannot write into a memory bank because the software is still reading that bank, at
which point it is set TRUE. The flag is not affected by the termination of capture so it is safe to read it at any
point until the next capture is initiated.

Note that even if data is dropped the sequence capture will still continue, it simply means that the resulting
sequence of images are not continuous, i.e. they were not captured in real time.

In area scan mode the loss of data means that fields or frames had to be dropped; in line scan mode the loss of
data means that at least one bank’s worth of lines was dropped. See the Concepts section of this manual for
more information.

RETURNS

This function returns either TRUE (for field or frames dropped) or FALSE (for real time sequence captured).

EXAMPLES

The following code shows the use of SNP24_is_sequence_dropped within the sequence loop.

while (DisplayLive == TRUE)
{
 while (SNP24_is_data_ready(Hsnp24) == FALSE)
 {}
 if (SNP24_is_sequence_dropped(Hsnp24) == TRUE)
 {
 /* Data has been lost, but both banks of memory contain valid sequence
 * images, so two more SNP24_read_video_data calls can be made before
 * a break occurs in the real time sequence.
 * Put error handling code here - may want to abort immediately; or read
 * the last two real time sequence images and then abort; or log at
 * which image the break occurs in the sequence, and then continue
 */
 }
 SNP24_read_video_data(Hsnp24, Himage, TMG_STRIP);
 process_image(Himage, ...);
}

BUGS / NOTES

There are no known bugs.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_sequence_dropped 35

SEE ALSO

SNP24_is_sequence_mode.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_sequence_mode 36

SNP24_is_sequence_mode

USAGE

Tboolean SNP24_is_sequence_mode(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether Snapper-24 has been set to sequence mode. It returns TRUE if
SNP24_set_capture has been called with parameter SNP24_SEQUENCE_MODE, or FALSE if
SNP24_set_capture has been called with parameter SNP24_SINGLE_CAPTURE_MODE. Note that this
function does not show if a sequence capture is actually taking place, only that Snapper-24 is in a mode where
any call to SNP24_capture results in a sequence capture occurring.

RETURNS

This function returns either TRUE (for sequence mode) or FALSE (for single capture mode).

EXAMPLES

The following code would be needed in a routine which is called when a “Freeze” button is pressed in an
application, and the routine needs to work in both sequence and single capture modes:

if (SNP24_is_sequence_mode() == TRUE)
{
 SNP24_capture(Hsnp24, SNP24_END_SEQUENCE);
 SNP24_read_video_data(Hsnp24, Himage, TMG_RESET);
}

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_is_sequence_dropped, SNP24_set_capture.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_trigger_started 37

SNP24_is_trigger_started

USAGE

Tboolean SNP24_is_trigger_started(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether an active edge of the external trigger has occurred. It returns TRUE from
the first active edge of the external trigger until the capture has completed. At all other times FALSE is
returned.

RETURNS

This function returns either TRUE (for active edge of trigger has occurred) or FALSE (for capture completed,
or active edge of trigger has not occurred).

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_is_capture_complete, SNP24_set_trigger.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_is_vsync_asserted 38

SNP24_is_vsync_asserted

USAGE

Tboolean SNP24_is_vsync_asserted(Thandle Hsnp24)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

DESCRIPTION

This function is used to test whether the vertical sync (VSync) signal, which is output by the video source
between fields, is asserted.

RETURNS

This function returns either TRUE during the vsync period or FALSE at all other times.

BUGS / NOTES

There are no known bugs.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_lm1882_prog 39

SNP24_lm1882_prog

USAGE

Terr SNP24_lm1882_prog(Thandle Hsnp24, Tparam mode, ui16 r1882[SNP24_NUM_LM1882_REGS])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required mode.

r1882 An array of ui16 elements containing the required register settings.

DESCRIPTION

This is a low level function which programs the 74ACT715 sync generator on Snapper-24. For most
applications this function should not be called directly, because SNP24_set_sync calls it with either
SNP24_LM1882_INIT_EIA or SNP24_LM1882_INIT_CCIR (when called with SNP24_SYNC_INIT or
SNP24_SYNC_INTERNAL). It is documented to allow the sync generator to be configured to special
frequencies or timings.

MODE

SNP24_LM1882_INIT_CCIR This configures the sync generator to CCIR frequencies.

SNP24_LM1882_INIT_EIA This configures the sync generator to EIA frequencies.

SNP24_LM1882_SET This copies the values in r1882[] to the 74ACT715. r1882[0] is written to
74ACT715 register 0, r1882[1] to register 1 and so on.

RETURNS

This function returns the register values it has written to the 74ACT715 in the r1882[] array. Possible error
codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT More than one mode parameter has been passed in, which is not allowed
because the parameters are mutually exclusive.

EXAMPLES

The following code sets the 74ACT715 to default EIA, except that it increases the clocks per line by 4
74ACT715 clocks:

ui16 r1882[SNP24_NUM_LM1882_REGS];
...
SNP24_lm1882_prog(Hsnp24, SNP24_LM1882_INIT_EIA, r1882);
/* Register 4 now contains the number of clocks per line */
r1882[4] += 4;
SNP24_lm1882_prog(Hsnp24, SNP24_LM1882_SET, r1882);

BUGS / NOTES

There are no known bugs.

This chip was originally named LM1882, hence the name SNP24_lm1882_prog.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_lm1882_prog 40

This function directly accesses the hardware at a low level, and therefore it may not be compatible with future
versions of Snapper-24. If it is necessary to use the function it is recommended that all calls to it are put into
one function, e.g. SNP24_set_sync_my_camera() so that any future changes which need to be made are
restricted to the one function.

Support for non-CCIR or EIA cameras may be added to the library as additional mode parameters, therefore
it may be worthwhile to check this with your distributor before writing low level code.

The National Semiconductor datasheet for the 74ACT715 gives full details of the internal registers. The
74ACT715 is driven by a 29.50MHz crystal in CCIR mode, or a 14.31818MHz crystal in EIA mode. The
crystal is selected by SNP24_set_video_standard.

This function is not supported in line scan mode.

SEE ALSO

SNP24_set_sync.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_read_video_data 41

SNP24_read_video_data

USAGE

Terr SNP24_read_video_data(Thandle Hsnp24, Thandle Himage, ui16 TMG_action)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

Himage Handle to image.

TMG_action TMG mode flag.

DESCRIPTION

This function reads data from Snapper-24 video memory into the image structure referenced by Himage.

When in single capture mode the data must already have been stored into video memory with a call to
SNP24_capture, and Himage must have been set up with a call to SNP24_set_image. The TMG_action flag
would normally be set to TMG_RUN. As the Snapper-24 memory may contain a large amount of data, the
imaging software can be run in strips to reduce the amount of system memory required at any one time.
Because of the strip technique it is possible to abort an image transfer at any time with the TMG_action flag.
Refer to the Concepts section of the TMG Programmer’s Manual for more details on strip processing.

When in sequence mode the function is called in three stages by using the TMG_action flags TMG_INIT,
TMG_STRIP and TMG_RESET. The Himage must have been set up with a call to SNP24_set_image before
calling the function with mode TMG_INIT.

TMG_ACTION

TMG_RUN This parameter should be used when in single capture mode.

TMG_INIT This parameter is used to initialize the read video data routine before starting
a sequence mode capture.

TMG_STRIP This parameter is used to read one image during a sequence mode capture. It
would normally be called multiple times while the sequence capture is
running.

TMG_RESET This parameter is used to reset the read video data routine after the
completion a sequence mode capture.
It can also be used in single capture mode to reset the routine if an image is
being processed in a strip loop and the strip loop is aborted.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_INCOMPATIBLE The mode TMG_STRIP was used without previously using TMG_INIT.

ASLERR_OUT_OF_MEMORY There is insufficient memory available to process the video data. If this
occurs, either there is a memory leak within the application, or the strip size
is too large (consult the TMG Programmer’s Manual for further details).

EXAMPLES

The following code does a capture, and then reads the new image, in single capture mode:

Snapper-24 Programmer’s Manual v4.0.1 SNP24_read_video_data 42

SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
SNP24_read_video_data(Hsnp24, Himage1, TMG_RUN);

See the sequence mode example in the Sample Applications section at the front of this manual for an example
of the use of modes TMG_INIT, TMG_STRIP, and TMG_RESET.

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_reset_read_pointer.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_reset_read_pointer 43

SNP24_reset_read_pointer

USAGE

Terr SNP24_reset_read_pointer(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required read pointer to reset.

DESCRIPTION

This function resets the read pointers to the video memory. This is used when an application requires to
re-read the data in video memory.

MODE

SNP24_READ_RESET_AUTO This is the only supported parameter.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

The following code does a capture, processes the image and then re-reads the video memory:

SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);
process_image(Himage, ...);
SNP24_read_reset_pointer(Hsnp24, SNP24_READ_RESET_AUTO);
SNP24_read_video_data(Hsnp24, Himage, TMG_RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_read_video_data.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_active_area 44

SNP24_set_active_area

USAGE

Terr SNP24_set_active_area(Thandle Hsnp24, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START First valid pixel number after line enable (0 = left of image).

ASL_ROI_Y_START First valid line number after frame enable (0 = top of image).

ASL_ROI_X_LENGTH Number of valid pixels.

ASL_ROI_Y_LENGTH Number of valid lines.

DESCRIPTION

This function defines the active area for the camera in use. This is used to allow SNP24_set_ROI to
automatically adjust invalid ROIs (Regions of Interest) so that they do not exceed the camera’s active area.
For many applications this function need not be called directly, because SNP24_initialize calls it to set the
active area of the selected camera.

All the coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones. The horizontal
and vertical resolutions are 1 pixel and 1 line respectively.

For conventional area scan cameras the pixel referenced by ASL_ROI_X_START and ASL_ROI_Y_START is
subsequently used by the ROI functions as pixel [0,0].

In line scan mode ASL_ROI_Y_LENGTH should be set to 1 to indicate one line, and ASL_ROI_Y_START is
not used, and should be set to 0. The pixel referenced by ASL_ROI_X_START is subsequently used by the
ROI functions as pixel 0.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_OUT_OF_RANGE The active area is too large for Snapper-24, or includes negative coordinates,
or for area scan cameras the active area is too large compared with the setting
of pixels per line.

EXAMPLES

For an area scan camera which starts outputting data on pixel 33 of line 2, and continues outputting until pixel
1042 of line 788:

roi[ASL_ROI_X_START] = 33;
roi[ASL_ROI_Y_START] = 2;
roi[ASL_ROI_X_LENGTH] = 1010; /* i.e. 1042 - 33 + 1 */
roi[ASL_ROI_Y_LENGTH] = 787; ; /* i.e. 788 - 2 + 1 */
SNP24_set_active_area(Hsnp24, roi);

For an area scan camera which starts outputting data on pixel 0 of line 0, and continues outputting until pixel
523 of line 250:

roi[ASL_ROI_X_START] = 0;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 523;

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_active_area 45

roi[ASL_ROI_Y_LENGTH] = 250
SNP24_set_active_area(Hsnp24, roi);

For a line scan camera which starts outputting data on pixel 10, and continues outputting until pixel 4050:

roi[ASL_ROI_X_START] = 10;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 4041; /* i.e. 4050 - 10 + 1 */
roi[ASL_ROI_Y_LENGTH] = 0
SNP24_set_active_area(Hsnp24, roi);

BUGS / NOTES

Currently for area scan cameras roi[ASL_ROI_X_START] must be at least 5 and roi[ASL_ROI_Y_START]
must be at least 1.

SEE ALSO

SNP24_set_ROI, SNP24_get_ROI_max, SNP24_set_ROI_rounding.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_callback 46

SNP24_set_callback

USAGE

Terr SNP24_set_callback(Thandle Hsnp24, Tparam mode, void (EXPORT_FN *callback)(Thandle, ui32,
void*), void *parameter)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required callback mode.

callback The callback function to install.

parameter Pointer to optional user defined parameter to pass to the installed callback function. This
would typically be a pointer to a user defined structure.

DESCRIPTION

This function installs a callback function that is called on certain events or interrupts which have been set up
by SNP24_set_interrupts.

MODE

SNP24_CALLBACK_INIT Callback functions are disabled. callback and parameter should be passed as
NULL. This is the default as set by SNP24_initialize.

SNP24_CALLBACK_SET Function callback together with parameter parameter are installed as the
callback function.

CALLBACK FUNCTION DEFINITION

void callback(Thandle Hdig24, ui32 int_source, void *parameter)

Hsnp24 Handle to Snapper-24. The library sets this to the Snapper-24 which caused the interrupt
(i.e. there may be more than one Snapper-24 in the system).

int_source The interrupt source which has interrupted. The library sets this using the #define
parameters as defined in SNP24_set_interrupts. These parameters are tested using bitwise
operators.

Parameter The library sets this to the user defined parameter parameter, as set by
SNP24_set_callback.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

EXAMPLES

This example shows how to enable interrupts and set up a callback to read data out of Snapper-24 when data is
available (i.e. when acquisition has completed):

/* Callback prototype */
void EXPORT_FN MyCallback(Thandle, ui32, void*);

/* The interrupt handler, which reads out data and saves it to a file */

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_callback 47

void EXPORT_FN MyCallback(Thandle hSnapper, ui32 dwIntSrc, void *pMyData)
{
 /* Test on the correct interrupt */
 if (!(dwIntSrc & SNP24_INT_DATA_READY))
 return; /* Unexpected interrupt - we could set an error flag here */

 SNP24_read_video_data(hSnapper, hImage, TMG_RUN);
 TMG_image_set_outfilename(hImage, (char*) pMyData);
 TMG_image_write(hImage, NULL, TMG_TIFF, TMG_RUN);
}

/* The following code would go into the main program */

/* We pass the name of the file in the optional parameter */
static char *szFilename = "test.tif";

/* Enable the callback function */
SNP24_set_callback(hSnapper, SNP24_CALLBACK_SET, MyCallback, szFilename);

/* Enable transfer complete interrupt, so that the acquired image will
 * automatically get saved as a TIFF file.
 */
SNP24_set_interrupts(hSnapper, SNP24_INT_DATA_READY, TRUE);

BUGS / NOTES

There are no known bugs.

This function is not supported under MS-DOS, Windows 3.1, Windows 95 or Windows 98 operating systems.

SEE ALSO

SNP24_set_interrupts.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_capture 48

SNP24_set_capture

USAGE

Terr SNP24_set_capture(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required capture mode.

DESCRIPTION

This function configures Snapper-24 for different types of image capture. It accepts up to four different
orthogonal options which can be ‘OR’ed together. For many applications this function need not be called
directly, because SNP24_initialize calls it with the parameter SNP24_CAPTURE_INIT.

INITIALIZATION

SNP24_CAPTURE_INIT The first call made to SNP24_set_capture must include this parameter. It
selects SNP24_SUB_X1, SNP24_START_1ST_FIELD,
SNP24_TRIG_IN_DISABLE, SNP24_SINGLE_CAPTURE_MODE and
SNP24_READOUT_NO_DEINTERLACE.

TRIGGER CONTROL

Capture can be delayed until an external trigger event happens:

SNP24_TRIG_IN_ENABLE Image capture requested by SNP24_capture will not start until an active edge
of the selected trigger occurs. See SNP24_set_trigger for information on
control of the trigger source.

SNP24_TRIG_IN_DISABLE Image capture requested by SNP24_capture will occur independent of the
trigger status.

Note that if the trigger is infrequent then the capture timeout parameter SNP24_TIMEOUT_TRIGGER will
need to be extended - see SNP24_set_parameter.

DEINTERLACE CONTROL

When a frame of video data is captured the image can be de-interlaced automatically as it is read from video
memory (for use with conventional area scan cameras, not line scan cameras). Note that this feature is not
available when sequence mode is enabled.

SNP24_READOUT_DEINTERLACE The image will be de-interlaced automatically as it is read from
video memory.

SNP24_READOUT_NO_DEINTERLACE The image will not be de-interlaced automatically as it is read
from video memory, so the fields will be preserved as they were
captured.

SUB-SAMPLE CONTROL (AREA SCAN MODE)

There are 5 different sub-sample ratios, which also control whether a field or frame is captured:

SNP24_SUB_X1 This enables full resolution image capture of a complete frame.

SNP24_SUB_X1_FIELD_DUPLICATE This enables full screen image capture at half vertical resolution.
This is achieved by capturing only 1 field, but replicating the
image data in software by repeating each line. This halves the
vertical resolution, but allows fast movement to be captured

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_capture 49

without the ‘double image’ which would result if movement was
captured in normal full frame mode from a field exposure
camera. If Snapper-24 is used in a system with a slow bus
compared to the processor speed (e.g. most ISA systems) then
this mode will allow faster transfer rates than SNP24_SUB_X1.
Conversely, in a system with a fast bus which supports DMA
(e.g. PCI or SBus systems) this mode will be slower than
SNP24_SUB_X1. Field duplication is not supported in sequence
mode.

SNP24_SUB_X1_SINGLE_FIELD This enables full resolution image capture of a single field. Note
that because the resulting image only contains one field it will
have the wrong aspect ratio; it will be half height.

SNP24_SUB_X2 This enables sub-sampled by 2 image capture. This is achieved
by capturing every other pixel in the horizontal direction and
only one field in the vertical direction.

SNP24_SUB_X4 This enables sub-sampled by 4 image capture. This is achieved
by capturing every fourth pixel in the horizontal direction and
every other line of one field in the vertical direction.

Note: If the subsample ratio is changed this function calls SNP24_set_ROI with the current ROI. This
allows the ROI to be checked and if necessary adjusted so that it complies with the settings given by
SNP24_set_ROI_rounding. Therefore if an application keeps its own copy of the current ROI is should call
SNP24_get_ROI to update its copy after calling SNP24_set_capture.

SUB-SAMPLE CONTROL (LINE SCAN MODE)

There are 4 different sub-sample ratios which control sub-sampling of data across the line:

SNP24_SUB_X1 This enables full resolution image capture of a complete line.

SNP24_SUB_X2 This enables sub-sampled by 2 image capture. This is achieved by capturing every
other pixel in the line.

SNP24_SUB_X4 This enables sub-sampled by 4 image capture. This is achieved by capturing every
fourth pixel in the line.

SNP24_SUB_X8 This enables sub-sampled by 8 image capture. This is achieved by capturing every
eighth pixel in the line.

Note that the function SNP24_set_linescan_ctrl controls the line acceptance ratio independently from the
sub-sample ratio.

Note: If the subsample ratio is changed this function calls SNP24_set_ROI with the current ROI. This
allows the ROI to be checked and if necessary adjusted so that it complies with the settings given by
SNP24_set_ROI_rounding. Therefore if an application keeps its own copy of the current ROI is should call
SNP24_get_ROI to update its copy after calling SNP24_set_capture.

INITIAL FIELD CONTROL

There are 2 different field control modes for use with conventional area scan cameras:

SNP24_START_1ST_FIELD Capture starts with a field 1. If a frame is being captured Snapper-24 will
wait for a field 1, and then capture this field 1 and the following field 2. If
a field is being captured Snapper-24 will wait for a field 1, and then only
capture this field.

SNP24_START_NEXT_FIELD Capture starts with the next field, either field 1 or field 2. If a frame is
being captured Snapper-24 will capture the next field and the following
field - this may be field 1 and field 2 of the same frame, or field 2 of one
frame and field 1 of the following frame. In either case the frame will be

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_capture 50

correctly deinterlaced. If a field is being captured Snapper-24 will only
capture the next field - either field 1 or field 2.

Note: SNP24_set_sync can be called with the parameter SNP24_SYNC_FIELDS_SWAP to allow
SNP24_START_1ST_FIELD to be turned into “SNP24_START_2ND_FIELD”.

SEQUENCE CONTROL

SNP24_capture can either capture one image or many images:

SNP24_SINGLE_CAPTURE_MODE Image capture requested by SNP24_capture will terminate after one
field or frame is acquired.

SNP24_SEQUENCE_MODE Snapper-24 is put into sequence mode where image capture
requested by SNP24_capture will continuously capture fields or
frames. See the Concepts section at the front of this manual for more
information on using sequence mode.

The following table details the behaviour of Snapper-24 for the various sequence mode, initial field and sub
sample options:

Sequence
Mode

Start 1st
Field

Sub x1 Description

(a) Acquire the next field, either field 1 or field 2, then stop.

(b) ✔ Acquire the next two fields, in either order, then stop. The data will be
stored as a single frame of data with the fields in the correct order.
However this may consist of field 2 from one frame interlaced with field 1
of the following frame.

(c) ✔ Acquire field 1 only, then stop. As Snapper-24 will have to wait until the
next field 1 to start acquisition, the average acquisition rate is likely to be
less than (b).

(d) ✔ ✔ Acquire field 1 followed by field 2, then stop. This will ensure that both
fields are from the same frame, but as Snapper-24 will have to wait until the
next field 1 to start acquisition, the average acquisition rate is likely to be
less than (a).

(e) ✔ Start acquiring on the next field, either field 1 or field 2, and continue to
acquire the same subsequent field until the capture is terminated. Use
SNP24_is_field1_captured to determine which field has been acquired.

(f) ✔ ✔ Start acquiring on the next field, either field 1 or field 2, and continue to
acquire every subsequent field until the capture is terminated. Use
SNP24_is_field1_captured to determine whether the first field acquired was
field 1 or field 2. Snapper-24 ensures that if the system cannot read data
fast enough, that pairs of fields will be lost to ensure the correct field
ordering at all times.

(g) ✔ ✔ Start acquiring on the next field 1, and continue to acquire each subsequent
field 1 until the capture is terminated.

(h) ✔ ✔ ✔ Start acquiring on the next field 1, and continue to acquire all subsequent
fields until the capture is terminated. Snapper-24 ensures that if the system
cannot read data fast enough, that pairs of fields will be lost to ensure the
correct field ordering at all times.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_capture 51

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other. No change
is made to the settings of Snapper-24.

EXAMPLES

The following code will capture the next first field using 2 times sub-sampling:

SNP24_set_capture(Hsnp24, SNP24_START_1ST_FIELD | SNP24_SUB_X2);
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_capture, SNP24_is_sequence_mode, SNP24_set_trigger.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_clamp 52

SNP24_set_clamp

USAGE

Terr SNP24_set_clamp(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required clamp mode.

DESCRIPTION

This function controls the Snapper-24 video clamp timing. It accepts two different orthogonal options which
can be ‘OR’ed together. For many applications this function need not be called directly, because
SNP24_initialize calls it with the parameters SNP24_CLAMP_INIT.

MODE

SNP24_CLAMP_INIT The clamp position is set to a default value (which is #defined as
SNP24_DEFAULT_CLAMP_START), which is correct for standard area scan
video formats at square pixel sampling frequencies.

SNP24_CLAMP_START This parameter allows the default clamp position to be changed. The required
number of four pixel clocks is ‘OR’ed with this parameter, e.g.
(SNP24_CLAMP_START | 15). The ROI will need changing after calling this
function because the ROI x_start position is referenced to the end of the clamp
pulse.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_OUT_OF_RANGE The value passed with SNP24_CLAMP_START is too big or too small.

EXAMPLES

The following code will set the clamp start to a value of 80 pixel clocks, (ie 4 x 20):

SNP24_set_clamp(Hsnp24, SNP24_CLAMP_START | 20);

BUGS / NOTES

There are no known bugs.

There is currently no control of clamp width, but the default width should be suitable.

SEE ALSO

SNP24_set_ROI.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_clk 53

SNP24_set_clk

USAGE

Terr SNP24_set_clk(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required clock mode.

DESCRIPTION

This function controls Snapper-24’s phase locked loop (PLL) and external clock line (PCLK). The mode
parameter is formed by ‘OR’ing the required options from the list defined below. For many applications this
function need not be called directly, because SNP24_initialize calls it with the SNP24_CLK_INIT parameter.

MODE

SNP24_CLK_INIT The first call made to SNP24_set_clk must include this parameter. This
sets the PLL to CCIR or EIA operation based on the most recent call to
SNP24_set_video_standard, selects fast lock, selects the PLL as the clock
source, and sets PCLK as an input.

SNP24_PLL_FAST_LOCK This sets the PLL so that it locks very quickly to a stable sync source. It
may not lock to a poor sync such as from a VCR.

SNP24_PLL_SLOW_LOCK This sets the PLL into a mode where it takes a few seconds to achieve
lock. This allows Snapper-24 to lock to poor syncs such as from a VCR.
It will also result in slightly lower pixel jitter on stable sync sources, and
is therefore recommended for any application where the initial few
seconds lock time is acceptable.

SNP24_PLL_PHASE_0,
SNP24_PLL_PHASE_90,
SNP24_PLL_PHASE_180,
SNP24_PLL_PHASE_270

These four parameters vary the time between the active edge of the
selected horizontal sync and the active pixel clock edge. As examples,
phase 0 makes the two active edges line up, phase 180 makes the
horizontal sync edge half way between active edges of pixel clock.
SNP24_CLK_INIT, SNP24_PLL_FAST_LOCK and
SNP24_PLL_SLOW_LOCK all select the optimum value of phase for
normal use. The phase can adjusted by experimentation to produce the
minimum noise from a given camera, that is when the active pixel clock
edge is in the middle of each pixel value output from the camera.

SNP24_PLL_VCO_GAIN This parameter overrides the default setting of the voltage controlled
oscillator (VCO) gain in the PLL. The required setting should be ‘OR’ed
with this parameter, e.g. (SNP24_PLL_VCO_GAIN | 3). The setting is a
number between 0 and 7, with a higher number corresponding to a higher
gain. Recommended values depend on the pixel clock frequency:

Pixel clock, MHz VCO_GAIN

1.9 ... 5 0

4.4 ... 7.5 1

5.6 ... 10 2

6.9 ... 12.5 3

7.5 ... 16 4

16 ... 20 5

The values 6 and 7 should not be needed. Note that the PLL may not lock

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_clk 54

with some values of VCO gain.

SNP24_PLL_PD_GAIN This parameter overrides the default setting of the phase detector gain in
the PLL. The required setting should be ‘OR’ed with this parameter, e.g.
(SNP24_PLL_PD_GAIN | 3). The setting is a number between 0 and 7,
with a higher number corresponding to a higher gain. Note that the PLL
may not lock with some values of phase detector gain, but the default
value should work for most applications.

SNP24_CLK_PLL This selects the output of the PLL as Snapper-24’s pixel clock.

SNP24_CLK_PCLK_IN_POS This selects the rising edge of the external PCLK signal as Snapper-24’s
pixel clock.

SNP24_CLK_PCLK_IN_NEG This selects the falling edge of the external PCLK signal as Snapper-24’s
pixel clock.

SNP24_CLK_PCLK_OUT_POS This drives the external PCLK signal with Snapper-24’s internal pixel
clock.

SNP24_CLK_PCLK_OUT_NEG This drives the external PCLK signal with Snapper-24’s internal pixel
clock inverted.

PARAMETER INTERACTION

When combinations of parameters are passed in one call to SNP24_set_clk the routine will interpret the
combinations in a ‘sensible’ way whenever possible, or return an error if the combinations are invalid. See
the examples given below.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other. See the
examples given below. No change is made to the setting of the clock
circuits.

ASLERR_NOT_RECOGNIZED This occurs when SNP24_CLK_INIT is passed and the video standard
setting is not recognised, possibly because SNP24_set_video_standard
has not been called.

ASLERR_OUT_OF_RANGE This occurs when the numeric value passed with a parameter such as
SNP24_PLL_VCO_GAIN is invalid.

EXAMPLES

In the following call the slow lock option will override the default of fast lock set by SNP24_CLK_INIT:

SNP24_set_clk(Hsnp24, SNP24_CLK_INIT | SNP24_PLL_SLOW_LOCK);

In the following call a VCO gain of 2 and a clock phase of 270° will override the default settings of
SNP24_CLK_INIT:

SNP24_set_clk(Hsnp24, (SNP24_VCO_GAIN | 2) | SNP24_CLK_INIT |
SNP24_PLL_CLOCK_PHASE_270);

The following call will result in a ASLERR_PARAM_CONFLICT error because the PLL and the PCLK input
cannot both provide the pixel clock at the same time:

SNP24_set_clk(Hsnp24, SNP24_CLK_PLL | SNP24_CLK_PCLK_IN_NEG);

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_clk 55

The following call will also result in a ASLERR_PARAM_CONFLICT error. This is because both parameters
require a value to be passed, which cannot be done by ‘OR’ing the values:

SNP24_set_clk(Hsnp24, (SNP24_PLL_VCO_GAIN | 2) | (SNP24_PLL_PD_GAIN | 3));

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_pix_per_line, SNP24_set_sync, SNP24_set_TTL422, SNP24_set_video_standard.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ctrlout 56

SNP24_set_ctrlout

USAGE

Terr SNP24_set_ctrlout(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required control output mode.

DESCRIPTION

This function allows the VSYNC and pixel clock pins to be used as control outputs in applications where they
are not being used as normal sync and clock. For many applications this function need not be called directly,
because SNP24_initialize calls it with the parameter SNP24_CTRLOUT_INIT.

The mode parameter should be one of the following:

MODE

SNP24_CTRLOUT_INIT This sets the control out pins in their default use as sync and clock signals,
and initialises the relevant internal structure settings.

SNP24_CTRLOUT_SYNC This sets the control out pins in their default use as sync and clock signals.

SNP24_CTRLOUT_SET This sets the control out pins to the specified value. The value is passed by
‘OR’ing it with this parameter, e.g. (SNP24_CTRLOUT_SET | 2), and must
be between 0 and 3. VSYNC and pixel clock must be set as outputs of the
required polarity by calls to SNP24_set_sync and SNP24_set_clk. VSYNC is
the LSB and pixel clock the MSB.

SNP24_CTRLOUT_VIDSRC The control out pins are driven with a binary pattern based on the most recent
call to SNP24_set_video_src. Subsequent calls to SNP24_set_video_src will
cause the control out pins to be updated automatically. This automatic mode
is cancelled by calling SNP24_set_ctrlout with a different parameter. The
dual use sync/clk/trigger pins must be enabled as outputs of the required
polarity - see above.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

ASLERR_OUT_OF_RANGE The value passed with SNP24_CTRLOUT_SET is greater than 3.

EXAMPLES

To set the pixel clock pin high and the VSync pin low. Note that SNP24_set_ctrlout is called before the pins
are enabled as outputs - otherwise a short burst of sync and clock would appear on the outputs.

SNP24_set_ctrlout(Hsnp24, SNP24_CTRLOUT_SET | 2);
SNP24_set_sync(Hsnp24, SNP24_SYNC_VSYNC_OUT_POS);
SNP24_set_clk(Hsnp24, SNP24_CLK_PCLK_OUT_POS);

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ctrlout 57

BUGS / NOTES

There are no known bugs. Note that if three programmable outputs are required the trigger pin can also be
used.

SEE ALSO

SNP24_set_clk, SNP24_set_sync, SNP24_set_trigger, SNP24_set_TTL422.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_format 58

SNP24_set_format

USAGE

Terr SNP24_set_format(Thandle Hsnp24, Tparam snap_format, ui16 TMG_format)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

snap_format Required format of Snapper.

TMG_format Required TMG format of resulting Himage.

DESCRIPTION

This function controls the format in which data is stored in both Snapper-24 video memory and in the host
computer’s memory. SNP24_initialize calls it with the parameter SNP24_FORMAT_INIT.

The parameter TMG_format should be a TMG library pixel format (see the TMG Programmer’s Manual).

SNAP_FORMAT

The parameter snap_format should be one of the following:

SNP24_FORMAT_INIT The first call made to SNP24_set_format must include this parameter.
This sets the format to SNP24_FORMAT_RGB for a Snapper-24, or
SNP24_FORMAT_Y8_ON_RED for a Snapper-8. It also overrides the
TMG_format to be TMG_RGBX32 for a Snapper-24, or TMG_Y8 for a
Snapper-8.

SNP24_FORMAT_RGB Video data will be read from the red, green and blue ADCs. If sync off
video is selected, the sync source will be switched to the current green
video source.

SNP24_FORMAT_Y8_ON_RED Video data will be read from the red ADC. If sync off video is selected,
the sync source will be switched to the current red video source. This is
the only monochrome format which is supported when Snapper-24 is used
on the ISA-BIB or ISA-JPG baseboards, as these baseboards do not have
a data mapper.

SNP24_FORMAT_Y8_ON_GRN Video data will be read from the green ADC. If sync off video is selected,
the sync source will be switched to the current green video source.

SNP24_FORMAT_Y8_ON_BLU Video data will be read from the blue ADC. If sync off video is selected,
the sync source will be switched to the current blue video source.

Many combinations of snap_format and TMG_format are only supported on baseboards with a data mapper,
because it is the data mapper which performs the necessary format conversions. Even with a data mapper
some combinations are not supported, for instance current data mappers do not support colour space
conversion, so TMG_YUV422 cannot be used as an output format. When a combination is not supported this
function returns an error, and a TMG_image_convert call could be made to perform the conversion in
software.

SNAPPER-8 DIFFERENCES

The Snapper-8 does not have a green or blue channel, so the only valid parameters are
SNP24_FORMAT_INIT and SNP24_FORMAT_Y8_ON_RED.

IMPORTANT: When writing code for a Snapper-8 which must also run on a Snapper-24, note that the
default format selected by SNP24_FORMAT_INIT will be different. Therefore the application must call
SNP24_set_format with SNP24_FORMAT_Y8_ON_RED selected after calling SNP24_initialize.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_format 59

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_PARAM_CONFLICT More than one snap_format parameter has been passed in, which is not
allowed because the parameters are mutually exclusive.

ASLERR_NOT_SUPPORTED Either:
A Snapper-8 is being used, and an option other than
SNP24_FORMAT_INIT or SNP24_FORMAT_Y8_ON_RED has been
requested, or:
The combination of parameters selected is not supported by the baseboard.
Either the baseboard may not have a data mapper, or the format conversion
required is too complex for the data mapper to perform.

EXAMPLES

The following code sets the format to ‘Y8 on blue’ for a Snapper-24, or ‘Y8 on red’ for a Snapper-8:

if (SNP24_get_ID(Hsnp24) == SNP24_ID)
 SNP24_set_format(Hsnp24, SNP24_FORMAT_Y8_ON_BLU, TMG_Y8);
else if (SNP24_get_ID(Hsnp24) == SNP8_ID)
 SNP24_set_format(Hsnp24, SNP24_FORMAT_Y8_ON_RED, TMG_Y8);
else
 /* Error - should never get here */

The following code sets the snapper format to ‘Y8 on blue’, and maps the output to the format TMG_RGB16
which is suitable for rapid display using both MS-DOS and Microsoft Windows. This conversion is done by
the data mapper reading monochrome data from the blue ADC, duplicating this data into its red and blue
channels, and finally trimming the resulting 24 bit value down to 16 bits by discarding the lower bits:

SNP24_set_format(Hsnp24, SNP24_FORMAT_Y8_ON_BLU, TMG_RGB16);

BUGS / NOTES

When a capture is done on a Snapper-24 board with the format set to, for example,
SNP24_FORMAT_Y8_ON_RED, the data in the green and blue video memory still gets updated.

If multiple monochrome cameras are needed on a Snapper-8, or an ISA-BIB or ISA-JPG combination is used
which does not have a data mapper remember that SNP24_set_video_src can be used to select between up to
four cameras connected to the red inputs without getting ASLERR_UNSUPPORTED problems.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_image 60

SNP24_set_image

USAGE

Terr SNP24_set_image(Thandle Hsnp24, Thandle Himage)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

Himage Handle to image.

DESCRIPTION

This function is used to initialize the image structure into which the captured image will be stored. It sets the
image size based upon the ROI (Region of Interest), the sub-sample ratio, and the image type based on the
requested format. It also initializes the image to process the video data in one strip (see the TMG
Programmer’s Manual for an explanation of strip processing).

This function must be called after SNP24_initialize has been called, or after the width or height of the ROI,
the sub-sample ratio, or the image format has changed, or the capture mode has been changed between
sequence and single capture mode, but before SNP24_read_video_data is called.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_NOT_RECOGNIZED The Snapper-24 sub-sample ratio is invalid.

EXAMPLES

/* Change the ROI ... */
SNP24_set_ROI(Hsnp24, SNP24_ROI_SET, roi);
/* ... therefore call set image before capturing ... */
SNP24_set_image(Hsnp24, Himage);
/* ... finally acquire the image */
SNP24_capture_to_image(Hsnp24, Himage, SNP24_START_AND_WAIT);

BUGS / NOTES

There are no known bugs.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_interrupts 61

SNP24_set_interrupts

USAGE

Terr SNP24_set_interrupts(Thandle Hsnp24, Tparam type, Tboolean flag)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

type Required interrupt to control.

flag TRUE / FALSE setting for requested interrupt.

DESCRIPTION

This function controls the generation of events and interrupts from Snapper-24. When an enabled interrupt
occurs, the function installed by SNP24_set_callback is called. Multiple interrupts are set by bitwise ORing
the interrupt options in a single call to SNP24_set_interrupts.

TYPE

SNP24_INT_INIT All interrupts are disabled. The flag parameter is ignored. This is
the default set by SNP24_initialize.

SNP24_INT_VSYNC When enabled, an interrupt is generated on a video vertical
synchronisation pulse (i.e. field sync).

SNP24_INT_DATA_READY When enabled, an interrupt is generated when an image has been
acquired into on-board frame memory. This may be a frame, field
or ROI, depending on the current Snapper mode.

SNP24_INT_TRANSFER_COMPLETE When enabled, an interrupt is generated when all data transfer has
completed from the Snapper on-board memory in host memory.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper handle is invalid.

ASLERR_BAD_PARAM The type parameter is invalid.

ASLERR_NOT_SUPPORTED A mode other than SNP24_INT_INIT has been selected under an operating
system which does not support interrupts.

EXAMPLES

This example shows how to perform interrupt driven acquisition and processing using two buffers in host
memory. The benefit in making the acquisition interrupt driven is that CPU’s processing time is maximised.

The program’s main thread installs the interrupt callback function, as described in the example under
SNP24_set_callback, starts acquisition and then processes the image data when signalled to do so from the
interrupt thread (using typically a semaphore - Win32 API examples are used here). Full error checking is
not shown for simplicity.

/* Setup Snapper-24 as appropriate */
…
/* Get valid image data into both buffers to start us off */
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
SNP24_read_video_data(Hsnp24, Himage1, TMG_RUN);

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_interrupts 62

SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);
SNP24_read_video_data(Hsnp24, Himage2, TMG_RUN);

/* Install the interrupt handler and enabled the appropriate interrupt */
SNP24_set_callback(Hsnp24, SNP24_CALLBACK_SET, MyCallback, NULL);
SNP24_set_interrupts(Hsnp24, SNP24_INT_DATA_READY, TRUE);

/* Start interrupt driven acquisition */
SNP24_capture(Hsnp24, START_AND_RETURN);

/* This main program thread now waits on a semaphore and then processes the
 * images when signalled from the interrupt handler.
 */

while (!bFinished) /* A global could be used to signal when finished */
{
 /* Wait until image 1 has been acquired into host memory */
 WaitForSingleObject(hSemaImageReady, 500); /* Win32 API */

 /* Process image 1 (at this point, image 2 is being acquired) */
 ProcessImage(Himage1);

 /* Now wait for image 2 */
 WaitForSingleObject(hSemaImageReady, 500);

 /* Process image 2 (at this point, image 2 is being acquired) */
 ProcessImage(Himage2);
}

/* Disable interrupt handler */
SNP24_set_callback(Hsnp24, SNP24_CALLBACK_INIT, NULL, NULL);

The interrupt handler, called on image acquisition complete (i.e. image data acquired into on-board memory),
then reads out the image data from Snapper, signals to the processing thread and starts acquisition of the next
image. The pre-processor directive _CALLBACK_SEQ shows how sequence mode would be supported.

/* This is our interrupt handler */
void InterruptHandler(Thandle Hsnp24, ui32 dwIntSrc, void *pMyData)
{
 static ui32 dwBuffer = 1;

 if (dwBuffer == 1)
 {
#ifdef _CALLBACK_SEQ
 SNP24_read_video_data(Hsnp24, Himage1, TMG_STRIP);
#else
 SNP24_read_video_data(Hsnp24, Himage1, TMG_RUN);
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
#endif
 dwBuffer = 2;
 }
 else
 {
#ifdef _CALLBACK_SEQ
 SNP24_read_video_data(Hsnp24, Himage2, TMG_STRIP);
#else
 SNP24_read_video_data(Hsnp24, Himage2, TMG_RUN);
 SNP24_capture(Hsnp24, SNP24_START_AND_RETURN);
#endif
 dwBuffer = 1;
 }
 ReleaseSemaphore(hSemaImageReady, 1, NULL); /* Win32 API */
}

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_interrupts 63

BUGS / NOTES

If adding or removing interrupts, disable interrupts using SNP24_set_callback (to NULL) first and then
re-enable after having called SNP24_set_interrupts.

This function is not supported under MS-DOS, Windows 3.1, Windows 95 or Windows 98 operating systems.

SEE ALSO

SNP24_set_callback.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_levels 64

SNP24_set_levels

USAGE

Terr SNP24_set_levels(Thandle Hsnp24, Tparam mode, ui8 levels[SNP24_LVL_MAX_LEVELS])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required mode.

levels An array of four elements for the required levels. The elements are:

levels[SNP24_LVL_WHITE], levels[SNP24_LVL_BLACK], levels[SNP24_LVL_CLAMP],
levels[SNP24_LVL_YCBCR].

DESCRIPTION

This function controls the analogue levels at the input to the ADCs. These are white level, black level, clamp
level and YCbCr level. For many applications this function need not be called directly, because
SNP24_initialize calls it with the SNP24_LVL_INIT parameter.

LEVELS

Black level sets the input video voltage which will result in the ADCs generating an output 0x00; similarly
white level sets the input video voltage which will result in the ADCs generating an output 0xFF. Clamp
level sets the voltage at which DC restoration is performed, i.e. the voltage to which the back porch of the
video is set to. YCbCr level only affects SNP-24-YCbCr modules, and it allows the DC restoration voltage
for the Cb and Cr components of the video to be set midway between white level and black level.

MODE

SNP24_LVL_INIT This sets the levels to default values for RGB or monochrome video, which are
SNP24_LVL_WHITE_INIT, SNP24_LVL_BLACK_INIT,
SNP24_LVL_CLAMP_INIT, and SNP24_LVL_YCBCR_INIT. The contents of
levels[] passed in are ignored. This gives a maximum dynamic range
corresponding to black = 0 and white = 255.

SNP24_LVL_INIT_601 This sets the levels to CCIR601 values for RGB or monochrome video, which
are SNP24_LVL_WHITE_INIT_601, SNP24_LVL_BLACK_INIT_601,
SNP24_LVL_CLAMP_INIT_601, and SNP24_LVL_YCBCR_INIT_601. The
contents of levels[] passed in are ignored. This gives a dynamic range
corresponding to black = 16 and white = 235.

SNP24_LVL_INIT_YCBCR This sets the levels to default values for YCbCr video, which are
SNP24_LVL_WHITE_INIT_YCBCR, SNP24_LVL_BLACK_INIT_YCBCR,
SNP24_LVL_CLAMP_INIT_YCBCR, and SNP24_LVL_YCBCR_INIT_YCBCR.
The contents of levels[] passed in are ignored.

SNP24_LVL_SET This sets the levels to the values in the levels[] array.

PRE-PROCESSING

The function checks the levels before writing them to the hardware. This is because some levels could result
in the hardware getting into an invalid state. As an example the white level voltage must be greater than the
black level voltage. Also the two least significant bits of the values must be zero.

To simplify the use of the function with interactive software (e.g. level sliders in a GUI application) the
function does not treat these invalid levels as an error. Instead it adjusts the levels to prevent the problem,
and then returns the actual levels set.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_levels 65

SNAPPER-8 DIFFERENCES

The Snapper-8 does not allow adjustment of the clamp level, and YCbCr video cannot be digitized. A
Snapper-8 behaves as if levels[SNP24_LVL_CLAMP] has been set to SNP24_LVL_CLAMP_INIT.

RETURNS

This function returns the actual levels values used (i.e. after any pre-processing) in the levels[] array.
Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT More than one mode parameter has been passed in, which is not allowed
because the parameters are mutually exclusive.

ASLERR_NOT_SUPPORTED A Snapper-8 is being used, and SNP24_LVL_INIT_YCBCR has been
requested.

EXAMPLES

The following code will set default levels:

ui8 levels[SNP24_LVL_MAX_LEVELS];
...
SNP24_set_levels(Hsnp24, SNP24_LVL_INIT, levels};
printf(“White level set to %d\n”, levels[SNP24_LVL_WHITE]);

The following code will change the white level, leaving the rest at default levels:

ui8 levels[SNP24_LVL_MAX_LEVELS];
ui8 white_level;
...
SNP24_set_levels(Hsnp24, SNP24_LVL_INIT, levels};
levels[SNP24_LVL_WHITE] = white_level;
printf(“White level passed as %d\n”, levels[SNP24_LVL_WHITE]);
SNP24_set_levels(Hsnp24, SNP24_LVL_SET, levels};
printf(“White level actually set to %d\n”, levels[SNP24_LVL_WHITE]);

BUGS / NOTES

There are no known bugs.

Detail notes on the levels: The resolution of the level settings is only six bits because the two LSBs are
ignored. For YCbCr operation the Clamp level is increased to give a DC restoration voltage midway between
white and black levels for Cb and Cr, then YCbCr level is used to reduce the DC restoration voltage for Y
back to the normal level. Therefore an increase in YCbCr level causes a decrease in the DC restoration
voltage for the Y component. The actual voltage changes corresponding to increasing a level by four (i.e. the
minimum change possible) are:

White Level 25.8mV

Black Level 19.9mV

Clamp Level 18.8mV

YCbCr Level -9.06mV

All levels give 0V for a setting of zero.

It is important that the clamp level is such that the entire video waveform (including sync) is within the
0 .. 5V range otherwise the input protection circuitry will clip the waveform.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_levels 66

SEE ALSO

SNP24_get_levels, SNP24_auto_gain, SNP24_auto_offset.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_linescan_ctrl 67

SNP24_set_linescan_ctrl

USAGE

Terr SNP24_set_linescan_ctrl(Thandle Hsnp24, Tparam mode, ui16 width)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required linescan mode

width Required width of line start out pulse

DESCRIPTION

This function controls parameters needed for line scan cameras. For many applications this function need not
be called because SNP24_initialize calls it with the required parameters for the selected camera. Even if it is
called it is only the line acceptance and trigger controls which should be needed.

The line start controls should only be needed to set up a camera which SNP24_initialize does not support.
Many cameras take a line start in signal and send it back as a line start out. This automatically compensates
for any propagation delays in buffers and cabling. It is necessary to have technical information on the camera
signal connections and timing to set these line start parameters correctly.

MODE

SNP24_LSCAN_LINES_X1 Line acceptance ratio - all incoming lines are stored.

SNP24_LSCAN_LINES_X2 Line acceptance ratio - every other incoming line is stored.

SNP24_LSCAN_LINES_X4 Line acceptance ratio - 1 in 4 incoming lines are stored.

SNP24_LSCAN_LINES_X8 Line acceptance ratio - 1 in 8 incoming lines are stored.

SNP24_LSCAN_LTRIG_IN_POS A positive edge on the line trigger input (trigger) will cause one
line to be captured.

SNP24_LSCAN_LTRIG_IN_NEG A negative edge on the line trigger input (trigger) will cause one
line to be captured.

SNP24_LSCAN_LTRIG_IN_TIMER One line will be captured on each positive edge from the
baseboard timer. This mode would normally be used in
conjunction with the astable mode of the timer, as controlled by
BASE_set_timer. This allows lines to be captured on a regular
interval.

SNP24_LSCAN_LSTART_IN_POS An active high line start in pulse from the camera is used to start
Snapper-24 acquiring data. The line start in signal should be
connected to the HSYNC pin.

SNP24_LSCAN_LSTART_IN_NEG An active low line start in pulse from the camera is used to start
Snapper-24 acquiring data. The line start in signal should be
connected to the HSYNC pin.

SNP24_LSCAN_LSTART_IN_NONE The camera does not generate a line start in pulse, so the internal
line start out pulse is used used to start Snapper-24 acquiring
data. Note that this internal pulse is not affected by the setting of
SNP24_LSCAN_LSTART_OUT_POS,
SNP24_LSCAN_LSTART_OUT_NEG, or
SNP24_LSCAN_LSTART_OUT_NONE.

SNP24_LSCAN_LSTART_OUT_POS An active high line start out pulse will be generated to tell the

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_linescan_ctrl 68

camera to start sending data. The width of this pulse will be
determined by the most recent call with the parameter
SNP24_LSCAN_LSTART_OUT_WIDTH, and the pulse is
generated is output on the VSYNC pin.

SNP24_LSCAN_LSTART_OUT_NEG An active low line start pulse will be generated to tell the camera
to start sending data. The width of this pulse will be determined
by the most recent call with the parameter
SNP24_LSCAN_LSTART_OUT_WIDTH, and the pulse is
generated is output on the VSYNC pin.

SNP24_LSCAN_LSTART_OUT_NONE No line start out pulse will be generated.

SNP24_LSCAN_LSTART_OUT_WIDTH The width of the line start out pulse is set by the width parameter.
This value is in pixel clocks.

The width parameter is only used if the mode SNP24_LSCAN_LSTART_OUT_WIDTH is selected. If this
mode is not selected then set width to zero.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

To set the line acceptance ratio to every other line:

SNP24_set_linescan_ctrl(Hsnp24, SNP24_LSCAN_LINES_X1, 0);

To set up the Snapper-24 to capture one line every 100ms:

BASE_set_timer(Hbase, BASE_TIMER_ASTABLE, (ui32) 50000L);
SNP24_set_linescan_ctrl(Hsnp24, SNP24_LSCAN_LTRIG_IN_TIMER, 0);

To set up the Snapper-24 for a camera which needs to receive an active high line start pulse 40 clocks wide,
and which returns an active low line start pulse:

SNP24_set_linescan_ctrl(Hsnp24, SNP24_LSCAN_LSTART_OUT_WIDTH, 40);
SNP24_set_linescan_ctrl(Hsnp24, SNP24_LSCAN_LSTART_OUT_POS |

SNP24_LSCAN_LSTART_IN_NEG, 0);

BUGS / NOTES

IMPORTANT : Line scan mode is not supported in this release of software.

SEE ALSO

SNP24_set_linescan_freq, SNP24_set_TTL422.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_linescan_freq 69

SNP24_set_linescan_freq

USAGE

Terr SNP24_set_linescan_freq(Thandle Hsnp24, ui16 freq)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

freq Required clock frequency in kHz.

DESCRIPTION

The freq parameter sets the frequency of the clock signal when the Snapper-24 is generating the clock. The
value passed in is the required frequency in kilohertz. The phase locked loop on the board is used as a
programmable frequency synthesiser in this mode.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_OUT_OF_RANGE freq is less than 475 (i.e. 475 kHz) or more than 20000 (i.e. 20 MHz).

EXAMPLES

To set generate an RS-422 output clock with a frequency of 1 MHz:

/* First enable the PLL and drive out the clock in RS-422 mode */
SNP24_set_TTL422(Hsnp24, SNP24_TTL422_PCLK_422);
SNP24_set_clk(Hsnp24, SNP24_CLK_PLL, SNP24_PCLK_OUT_POS);
/* Now set the frequency to 1 MHz */
SNP24_set_linescan_freq(Hsnp24, 1000);

BUGS / NOTES

IMPORTANT : Line scan mode is not supported in this release of software.

SEE ALSO

SNP24_set_linescan_ctrl.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_LUTs 70

SNP24_set_LUTs

USAGE

Terr SNP24_set_LUTs(Thandle Hsnp24, Tparam mode, int sel252, ui8 lut[SNP24_SIZE_LUT252])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required mode.

sel252 Which channels to update.

lut An array of 256 elements for the required LUT.

DESCRIPTION

This function controls the look up tables (LUTs) which the digitized video data is passed through between the
output of the ADCs and the input to the frame store. For many applications this function need not be called
directly, because SNP24_initialize calls it with sel252 set to SNP24_252_ALL and mode set to
SNP24_LUT_INIT.

SEL252 OPTIONS

This controls which of the three LUTs for the red, green and blue channels are affected by this call. The
parameter can be one of SNP24_252_RED, SNP24_252_GRN or SNP24_252_BLU which only change one
LUT; or SNP24_252_ALL which writes to all three LUTs in parallel for speed.

MODE

SNP24_LUT_INIT This writes a linear ramp to the selected LUT(s), effectively bypassing it. That
is LUT address 0 contains 0, LUT address 1 contains 1, etc, up to LUT address
255 contains 255. The contents of lut[] passed in are ignored.

SNP24_LUT_INVERSE This writes a inverse linear ramp to the selected LUT(s). That is LUT address
0 contains 255, LUT address 1 contains 254, etc, up to LUT address 255
contains 0. The contents of lut[] passed in are ignored. This mode is useful
for some line scan cameras which output inverse video.

SNP24_LUT_SET This copies the values in lut[] to the selected LUT(s).

SNAPPER-8 DIFFERENCES

On a Snapper-8 sel252 must be either SNP24_252_ALL or SNP24_252_RED, which are treated identically.

RETURNS

This function returns the LUT written in the lut[] array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT More than one mode parameter has been passed in, which is not allowed
because the parameters are mutually exclusive.

ASLERR_NOT_SUPPORTED A Snapper-8 is being used, and sel252 has been set to SNP24_252_GRN or
SNP24_252_BLU.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_LUTs 71

EXAMPLES

The following code will set the red LUT to a ramp:

SNP24_set_LUT(Hsnp24, SNP24_LUT_INIT, SNP24_252_RED, lut);

The following code will set all three LUTs to binary threshold at level 100:

ui8 lut[SNP24_SIZE_LUT252];
ui8 *pLut;

pLut = lut;
for (lut_addr = 0; lut_addr < 100; lut_addr++)
 *pLut++ = 0;

for (lut_addr = 100; lut_addr < SNP24_SIZE_LUT252; lut_addr++)
 *pLut++ = 255;

SNP24_set_LUT(Hsnp24, SNP24_LUT_SET, SNP24_252_ALL, lut);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_get_LUTs

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_parameter 72

SNP24_set_parameter

USAGE

Terr SNP24_set_parameter(Thandle Hsnp24, ui16 parameter, ui32 value)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

parameter The parameter to set.

value The value to set the parameter to.

DESCRIPTION

This function sets various parameters in the internal structure associated with the Snapper-24 handle.

PARAMETER

SNP24_TIMEOUT_TRIGGER This sets the timeout value in milliseconds for the period from when
SNP24_capture is called to when the trigger is received. The default
value is 4 seconds. Note that in external trigger mode if the trigger rate is
slower than 4 seconds then this will need to be increased.

RETURNS

ASL_OK on success, otherwise ASLERR_BAD_HANDLE if the Bus Interface Board’s handle is not valid.

EXAMPLES

To increase the timeout before capture to 15 seconds when switching to external trigger mode:

SNP24_set_capture(Hsnp24, SNP24_TRIG_IN_ENABLE);
SNP24_set_parameter(Hsnp24, SNP24_TIMEOUT_TRIGGER, (ui32) 15000L);

BUGS / NOTES

There are no known bugs.

For the timeout parameters the granularity depends on the operating system in use, but will not be more than 1
second.

SEE ALSO

SNP24_get_parameter.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_pix_per_line 73

SNP24_set_pix_per_line

USAGE

Terr SNP24_set_pix_per_line(Thandle Hsnp24, ui16 pix_per_line)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

pix_per_line Required pixels per line

DESCRIPTION

The pix_per_line parameter overrides the default CCIR or EIA setting of the number of pixels per line for
conventional areas scan cameras. This default is set by the SNP24_CLK_INIT parameter of SNP24_set_clk.
Note that required setting is the number of pixel clocks between horizontal sync pulses, and is therefore larger
than the number of pixel clocks in the active area; for example the default value for CCIR is 944. The
maximum value allowable is 2048, and the minimum value 64. This function controls the phase locked loop
(PLL) and is not relevant if the external clock PCLK is being used.

If it is intended to reduce the number of pixels per line it may be necessary to reduce the active area
ASL_ROI_X_LENGTH, otherwise the ROI may extend beyond the end of the line.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_OUT_OF_RANGE pix_per_line is less than 64 or more than 2048, or the value of pix_per_line is
too small compared to the setting of the active area ASL_ROI_X_LENGTH.

EXAMPLES

To set 1024 pixels per line:

SNP24_set_pix_per_line(Hsnp24, 1024);

BUGS / NOTES

It may be necessary to adjust the SNP24_set_clk parameters SNP24_PLL_VCO_GAIN and
SNP24_PLL_PD_GAIN if the number of pixels per line is changed significantly from the default value.

This function is not supported for line scan cameras - see SNP24_set_linescan_freq.

SEE ALSO

SNP24_set_clk.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ROI 74

SNP24_set_ROI

USAGE

Terr SNP24_set_ROI(Thandle Hsnp24, Tparam mode, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hsnp24 Handle to Snapper-24.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

DESCRIPTION

This function defines the ROI (Region of Interest). For many applications this function need not be called
directly, because SNP24_initialize calls it to set the full ROI for CCIR or EIA cameras.

For conventional area scan cameras the top left corner of the image is defined with the ASL_ROI_X_START
and ASL_ROI_Y_START values and the image size defined with the ASL_ROI_X_LENGTH and
ASL_ROI_Y_LENGTH values. All the coordinates are based upon raw image sizes in pixels and lines, not
sub-sampled ones. This allows the image sub-sampling ratio to be varied for fast update or image resolution,
without varying the ROI as well. The horizontal resolution is 4 pixels, and vertical is one line per field for
ASL_ROI_Y_START and 2 lines per field for ASL_ROI_Y_LENGTH.

For line scan mode the first pixel in the line is defined with the ASL_ROI_X_START value and the line width
defined with the ASL_ROI_X_LENGTH value. These X coordinates are based upon raw image sizes in
pixels, not sub-sampled ones, with a resolution of 4 pixels. The coordinate ASL_ROI_Y_START should be 0,
and ASL_ROI_Y_LENGTH defines the number of lines to capture per memory bank (see the Concepts section
at the start of the manual for more information on memory banks). The Y coordinate has a resolution of one
line, but note that this controls how many lines are captured, not how many are incoming, therefore a constant
number of lines are stored even if the line acceptance ratio is changed.

The benefit of using a reduced ROI compared to a full screen image is that the frame readout rate can be
significantly faster because there is less data to read out.

MODE

SNP24_ROI_CHECK The roi passed in is pre-processed (see below), but not actually set. This allows an
application to check what ROI would get used if SNP24_ROI_SET was called,
without having to change the setup of the Snapper.

SNP24_ROI_SET The roi passed in is selected.

PRE-PROCESSING

The function checks the ROI before setting it in hardware. If the ROI requested is outside the valid range for
the camera in use (as set by SNP24_set_active_area) the function does not return an error. Instead it trims
the ROI, and returns the actual ROI set. This is done to simplify the use of the function with interactive
software (e.g. window sizing).

Similarly, the ROI is adjusted to satisfy the rounding requirements (as set by SNP24_set_ROI_rounding).

RETURNS

This function returns the actual ROI set in the roi array. Possible error codes:

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ROI 75

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAMETER The mode parameter is invalid.

EXAMPLES

To select an ROI starting in the top left hand corner of the active area which is 500 pixels wide by 10 lines
deep:

i16 roi[ASL_SIZE_2D_ROI];

roi[ASL_ROI_X_START] = 0;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 500;
roi[ASL_ROI_Y_LENGTH] = 10;
SNP24_set_ROI(Hsnp24, SNP24_ROI_SET, roi);

The following shows the effect of the parameter pre-processing:

roi[ASL_ROI_X_START] = 15;
roi[ASL_ROI_Y_START] = 1;
roi[ASL_ROI_X_LENGTH] = 768;
roi[ASL_ROI_Y_LENGTH] = 576;
SNP24_set_active_area(Hsnp24, roi);

roi[ASL_ROI_X_START] = 0;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 1000;
roi[ASL_ROI_Y_LENGTH] = 400;
SNP24_set_ROI(Hsnp24, SNP24_ROI_SET, roi);
/* roi[ASL_ROI_X_START] will still contain 0
 * roi[ASL_ROI_Y_START] will still contain 0
 * roi[ASL_ROI_X_LENGTH] will now contain 768,
 * i.e. the value of 1000 has been clipped
 * roi[ASL_ROI_Y_LENGTH] will still contain 400
 */

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_get_ROI, SNP24_get_ROI_max, SNP24_set_active_area, SNP24_set_linescan_ctrl,
SNP24_set_ROI_rounding.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ROI_rounding 76

SNP24_set_ROI_rounding

USAGE

Terr SNP24_set_ROI_rounding(Thandle Hsnp24, ui16 x_round, ui16 y_round)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

x_round Required x direction rounding value

y_round Required y direction rounding value

DESCRIPTION

x_round and y_round allow SNP24_set_ROI to automatically adjust ROIs. For many applications this
function need not be called directly, because SNP24_initialize calls it with values x_round of 2 and y_round
of 1.

If x_round is not one, the horizontal width of an image is reduced to be a multiple of the number specified.
For example, if it is required that all Himages have a width which is exactly divisible by 8 then x_round
should be set to 8.

Similarly, if y_round is not zero the number of lines in an image is reduced to be a multiple of the number
specified. For example, if it is required that all Himages have a height which is exactly divisible by 64 then
y_round should be set to 64.

Note that it is the resulting image size allowing for subsampling which is adjusted, and not the x1
subsampling parameters of the ROI.

Both x_round and y_round can have values of 1, 2, 4, 8, 16, 32, 64, 128 or 256.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_OUT_OF_RANGE x_round or y_round is not a supported value as listed above.

EXAMPLES

All ROIs set by subsequent calls to SNP24_set_ROI will be a multiple of 2 pixels wide, and a multiple of 8
lines high:

SNP24_set_ROI_rounding(Hsnp24, 2, 8);

In this example the ROI specified does not need adjusting because 84 is divisible by 2:

SNP24_set_capture(Hsnp24, SNP24_SUB_X1);
SNP24_set_ROI_rounding(Hsnp24, 2, 1);
roi[ASL_ROI_X_LENGTH] = 84;
SNP24_set_roi(Hsnp24, SNP24_ROI_SET, roi);

In this example the ROI specified will be adjusted because 21 (the resulting image width at x4 subsampling,
i.e. 84 / 4) is not divisible by 2:

SNP24_set_capture(Hsnp24, SNP24_SUB_X4);
SNP24_set_ROI_rounding(Hsnp24, 2, 1);
roi[ASL_ROI_X_LENGTH] = 86;
SNP24_set_roi(Hsnp24, SNP24_ROI_SET, roi);
/* roi[ASL_ROI_X_LENGTH] now 80 giving an image width of 20 */

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_ROI_rounding 77

BUGS / NOTES

There are no known bugs.

It is recommended that x_round is set to 2 or greater because some image processing libraries, including
many functions in the TMG library, cannot cope with odd width images.

Any changes in the settings of SNP24_set_ROI_rounding will not take affect until SNP24_set_ROI has been
called.

SEE ALSO

SNP24_set_ROI, SNP24_get_ROI_max.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_sync 78

SNP24_set_sync

USAGE

Terr SNP24_set_sync(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required sync mode.

DESCRIPTION

This function controls Snapper-24’s sync circuits for use with conventional area scan cameras. The mode
parameter is formed by ‘OR’ing the required options from the list defined below. For many applications this
function need not be called directly, because SNP24_initialize calls it with the SNP24_SYNC_INIT parameter.

MODE

SNP24_SYNC_INIT The first call made to SNP24_set_sync must include this
parameter. This selects sync off video, sets the HSYNC
and VSYNC pins to be inputs and sets the sync
generator to CCIR or EIA operation based on the most
recent call to SNP24_set_video_standard. It also sets
the mode SNP24_SYNC_FIELDS_STD.

SNP24_SYNC_OFF_VIDEO The sync source is selected based on the most recent
calls to SNP24_set_format and SNP24_set_video_src.
Subsequent calls to SNP24_set_format and
SNP24_set_video_source will cause the sync source to
be updated automatically. This automatic mode is
cancelled by calling SNP24_set_sync with a different
SNP24_SYNC_OFF_ parameter, or
SNP24_SYNC_INTERNAL.

SNP24_SYNC_OFF_RED1,
SNP24_SYNC_OFF_RED2,
SNP24_SYNC_OFF_RED3,
SNP24_SYNC_OFF_RED4

One of the four red video inputs is selected as the sync
source. The selected input must have a negative 75
Ohm composite sync signal connected, or a video signal
including sync.

SNP24_SYNC_OFF_GRN1,
SNP24_SYNC_OFF_GRN2,
SNP24_SYNC_OFF_GRN3,
SNP24_SYNC_OFF_GRN4

One of the four green video inputs is selected as the sync
source. The selected input must have a negative 75
Ohm composite sync signal connected, or a video signal
including sync.

SNP24_SYNC_OFF_BLU1,
SNP24_SYNC_OFF_BLU2,
SNP24_SYNC_OFF_BLU3,
SNP24_SYNC_OFF_BLU4

One of the four blue video inputs is selected as the sync
source. The selected input must have a negative 75
Ohm composite sync signal connected, or a video signal
including sync.

SNP24_SYNC_OFF_CSYNC_NEG The CSYNC pin is selected as the sync source. This
input must have a negative 75 Ohm composite sync
signal connected, or a video signal including sync.

SNP24_SYNC_OFF_HVSYNC_POS The HSYNC and VSYNC pins are selected as the sync
source. These inputs must have positive TTL or RS-422
horizontal sync and vertical sync signals connected
respectively.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_sync 79

SNP24_SYNC_OFF_HSYNC_POS_VSYNC_NEG The HSYNC and VSYNC pins are selected as the sync
source. These inputs must have a positive horizontal
sync and a negative vertical sync, TTL or RS-422 signal
connected respectively.

SNP24_SYNC_OFF_HVSYNC_NEG The HSYNC and VSYNC pins are selected as the sync
source. These inputs must have negative TTL or
RS-422 horizontal sync and vertical sync signals
connected respectively.

SNP24_SYNC_OFF_HSYNC_NEG_VSYNC_POS The HSYNC and VSYNC pins are selected as the sync
source. These inputs must have a negative horizontal
sync and a positive vertical sync, TTL or RS-422 signal
connected respectively.

SNP24_SYNC_INTERNAL The internal sync generator is selected as the sync
source.

SNP24_SYNC_CSYNC_OUT_NEG This drives the CSYNC pin with a negative 75 Ohm
black level composite sync signal derived from the
selected sync source. This is most useful in conjunction
with SNP24_SYNC_INTERNAL.

SNP24_SYNC_HSYNC_OUT_POS This drives the HSYNC pin with a positive TTL or
RS-422 horizontal sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_HSYNC_OUT_NEG This drives the HSYNC pin with a negative TTL or
RS-422 horizontal sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_VSYNC_OUT_POS This drives the VSYNC pin with a positive TTL or
RS-422 vertical sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_VSYNC_OUT_NEG This drives the VSYNC pin with a negative TTL or
RS-422 vertical sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_C_ON_H_OUT_POS This drives the HSYNC pin with a positive TTL or
RS-422 composite sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_C_ON_H_OUT_NEG This drives the HSYNC pin with a negative TTL or
RS-422 composite sync signal derived from the selected
sync source. This is most useful in conjunction with
SNP24_SYNC_INTERNAL.

SNP24_SYNC_FIELDS_SWAP This causes the board to reverse the order in which
fields are stored as they are written to video memory, i.e.
the first incoming field is stored as the second field and
vice-versa. This is intended to allow use with video
sources which output their fields reversed; it also can be
used to turn SNP24_capture mode
SNP24_START_1ST_FIELD into next 2nd field.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_sync 80

SNP24_SYNC_FIELDS_STD This is the default mode, and should be used to restore
Snapper-24 to standard mode after
SNP24_SYNC_FIELDS_SWAP has been called.

PARAMETER INTERACTION

When combinations of parameters are passed in one call to SNP24_set_sync the routine will interpret the
combinations in a ‘sensible’ way whenever possible, or return an error if the combinations are invalid. See
the examples given below.

SNAPPER-8 DIFFERENCES

On a Snapper-8 the modes SNP24_SYNC_OFF_GRN and SNP24_SYNC_OFF_BLU are not supported.

IMPORTANT: When writing code for a Snapper-8 which must also run on a Snapper-24, note that the
default sync source selected by SNP24_SYNC_OFF_VIDEO will be different because the format set by
SNP24_set_format is different. Therefore the application must call SNP24_set_format with
SNP24_FORMAT_Y8_ON_RED selected after calling SNP24_initialize.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other. See the
examples given below. No change is made to the setting of the sync
circuits.

ASLERR_NOT_RECOGNIZED This occurs when SNP24_SYNC_INIT is passed and the video standard
setting is not recognised, possibly because SNP24_set_video_standard
has not been called.

ASLERR_NOT_SUPPORTED A Snapper-8 is being used, and one of the SNP24_SYNC_OFF_GRN or
SNP24_SYNC_OFF_BLU modes has been requested.

EXAMPLES

In the following call the SNP24_SYNC_OFF_RED2 option will override the default of
SNP24_SYNC_OFF_VIDEO set by SNP24_SYNC_INIT:

SNP24_set_sync(Hsnp24, SNP24_SYNC_INIT | SNP24_SYNC_OFF_RED2);

In the following call the internal sync generator will be selected, and the HSYNC pin will be driven out, again
overriding the default settings:

SNP24_set_sync(Hsnp24, SNP24_SYNC_INIT | SNP24_SYNC_INTERNAL |
SNP24_SYNC_HSYNC_OUT_NEG);

The following call will result in a ASLERR_PARAM_CONFLICT error because the external CSYNC pin
cannot function as both the sync source and as an output at the same time:

SNP24_set_sync(Hsnp24, SNP24_SYNC_OFF_CSYNC_NEG | SNP24_SYNC_CSYNC_OUT_NEG);

BUGS / NOTES

When the external VSYNC and HSYNC signals are selected as the sync source, the CSYNC output is
generated by gating HSYNC and VSYNC, therefore the waveform generated is not ideal. If a ‘proper’

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_sync 81

CSYNC output is needed, either use the internal sync generator, or feed a good composite sync source into
one of the video inputs and select it as the sync source.

The function is not supported in line scan mode - see SNP24_set_linescan_ctrl.

SEE ALSO

SNP24_set_video_standard, SNP24_set_clk, SNP24_set_TTL422.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_timer 82

SNP24_set_timer

USAGE

Terr SNP24_set_timer(Thandle Hsnp24, Tparam mode, ui32 time, Terr (EXPORT_FN
*time_fn)(Thandle))

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required timer mode.

time Required time pulse width.

time_fn Required timer control function.

DESCRIPTION

This function controls the timer on the baseboard to generate pulses, typically for camera exposure control.
For many applications this function need not be called directly, because SNP24_initialize calls it with the
parameter SNP24_TIMER_INIT.

SNP24_set_timer sets up a timer control function which is automatically called by SNP24_capture to
generate a timed pulse for the camera. A default timer control function provides a single pulse of
programmable width. If a sequence of pulses is required then a custom function can be written, and
SNP24_capture will automatically call it.

The timer pulse can only be output on the trigger pin, so SNP24_set_trigger must be called to set the trigger
pin in the required mode.

The timer hardware is fitted to the baseboard. Some baseboards (such as ISA-JPG) do not provide this
function, resulting in the first call to SNP24_capture with the timer enabled failing with error
ASLERR_NOT_SUPPORTED from function BASE_set_timer.

The mode parameter should be one of the following:

MODE

SNP24_TIMER_INIT This selects the default timer function, but disables the timer by setting
the exposure time to zero. The values of time and time_fn are ignored.

SNP24_TIMER_SET_EXPOSURE This controls the exposure time used by the default timer function. The
exposure time is passed in the time parameter in microseconds. The
value of time_fn is ignored.

SNP24_TIMER_SET_TIMER_FN This allows a custom timer function to be called. This might be used if
a sequence of pulses is required for a camera. A pointer to the custom
function is passed in the time_fn parameter. The value of time is
ignored.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_timer 83

EXAMPLES

To enable a single active low pulse on the trigger pin, of width 10ms, to be automatically generated on each
capture from then on:

SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_TIMER_NEG);
SNP24_set_timer(Hsnp24, SNP24_TIMER_SET_EXPOSURE, (ui32) 10000, NULL);
...
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT;

To set up a custom timer function which enables an active high pulse of 1ms, followed by a low pulse of 1s,
followed by a high pulse of 1ms, to be automatically generated on each capture from then on:

main()
{
 ...
 SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_TIMER_POS);
 SNP24_set_timer(Hsnp24, SNP24_TIMER_SET_TIME_FN, 0, my_timer_function);
 ...
}

Terr EXPORT_FN my_timer_function(Thandle Hsnp24)
{
 Thandle Hbase;

 /* First get baseboard handle so BASE functions can be called */
 Hbase = SNP24_get_parameter(Hsnp24, SNP24_BASEBOARD_HANDLE);

 /* Generate first pulse */
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);
 /* Hold exposure line low for 1 second */
 SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_LO);
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000000L);
 /* Finally generate second pulse */
 SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_TIMER_POS);
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);
 return(ASL_OK);
}

BUGS / NOTES

There are no known bugs.

SEE ALSO

BASE_set_timer, SNP24_set_trigger.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_trigger 84

SNP24_set_trigger

USAGE

Terr SNP24_set_trigger(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required trigger mode.

DESCRIPTION

This function sets the trigger mode. For many applications this function need not be called directly, because
SNP24_initialize calls it with the parameter SNP24_TRIG_INIT. Note that SNP24_TRIG_IN_POS and
SNP24_TRIG_IN_NEG do not enable triggering - to do this call SNP24_set_capture with
SNP24_TRIG_IN_ENABLE.

Up to four trigger sources can be used; the ‘standard’ trigger pin is always available, and in addition the
VSYNC, HSYNC and pixel clock pins can be used as trigger inputs if they are not being used for normal sync
or clock use.

The mode parameter should be one of the following:

MODE

SNP24_TRIG_INIT This sets the standard trigger pin as an input with the rising edge active,
and selects the standard trigger pin as the active trigger source.

SNP24_TRIG_IN_POS This specifies that the standard trigger pin is an input with the rising
edge active.

SNP24_TRIG_IN_NEG This specifies that the standard trigger pin is an input with the falling
edge active.

SNP24_TRIG_OUT_HI This drives the standard trigger pin to a high level.

SNP24_TRIG_OUT_LO This drives the standard trigger pin to a low level.

SNP24_TRIG_OUT_TIMER_POS This drives the standard trigger from the baseboard’s timer, with an
active high pulse when the timer is in monostable mode.

SNP24_TRIG_OUT_TIMER_NEG This drives the standard trigger from the baseboard’s timer, with an
active low pulse when the timer is in monostable mode.

SNP24_TRIG_IN_TRIG1 This selects the standard trigger pin as the active trigger source.

SNP24_TRIG_IN_TRIG2 This selects the VSYNC pin as a trigger, and makes it the active trigger
source. The VSYNC pin must first be enabled as an input of the
required polarity via a call to SNP24_set_sync.

SNP24_TRIG_IN_TRIG3 This selects the pixel clock pin as a trigger, and makes it the active
trigger source. The pixel clock pin must first be enabled as an input of
the required polarity via a call to SNP24_set_clk.

SNP24_TRIG_IN_TRIG4 This selects the HSYNC pin as a trigger, and makes it the active trigger
source. The HSYNC pin must first be enabled as an input of the
required polarity via a call to SNP24_set_sync.

SNP24_TRIG_IN_VIDSRC The trigger source is selected based on the most recent call to
SNP24_set_video_src. Subsequent calls to SNP24_set_video_src will
cause the trigger source to be updated automatically. This automatic

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_trigger 85

mode is cancelled by calling SNP24_set_trigger with a different
SNP24_TRIG_IN_ parameter. The dual use sync/clk/trigger pins must
first have been enabled as inputs of the required polarity - see above.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

To select falling edge trigger on the default trigger input, then acquire the image on a trigger input pulse:

SNP24_set_trigger(Hsnp24, SNP24_TRIG_IN_NEG | SNP24_TRIG_IN_TRIG1);
SNP24_set_capture(Hsnp24, SNP24_TRIG_IN_ENABLE);
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);

To select falling edge trigger on the dual use pixel clock input, then acquire the image on a trigger input
pulse. Note the use of two calls to SNP24_set_clk, the first to set the pixel clock pin as a falling edge input,
the second to restore the required clock mode:

SNP24_set_clk(Hsnp24, SNP24_CLK_PCLK_IN_NEG);
SNP24_set_clk(Hsnp24, SNP24_CLK_PLL);
SNP24_set_trigger(Hsnp24, SNP24_TRIG_IN_TRIG3);
SNP24_set_capture(Hsnp24, SNP24_TRIG_IN_ENABLE);
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT);

To use three trigger sources in SNP24_TRIG_IN_VIDSRC mode, and the pixel clock pin as a normal clock
output. With pixel clock in use the three trigger sources free are the standard trigger, VSYNC and HSYNC;
therefore the video sources used must be VIDSRC1, VIDSRC2 and VIDSRC4. VIDSRC3 cannot be used
because the use of SNP24_TRIG_IN_VIDSRC mode would make the pixel clock pin a trigger input: Note the
use of two calls to SNP24_set_sync, the first to set the VSYNC pin as a falling edge input, the second to
restore the required sync mode:

SNP24_set_sync(Hsnp24, SNP24_SYNC_OFF_HVSYNC_POS);
SNP24_set_sync(Hsnp24, SNP24_SYNC_OFF_VIDEO);
SNP24_set_trigger(Hsnp24, SNP24_TRIG_IN_POS | SNP24_TRIG_IN_VIDSRC);
SNP24_set_capture(Hsnp24, SNP24_TRIG_IN_ENABLE);
SNP24_set_video_src(Hsnp24, SNP24_VIDSRC_SRC2, SNP24_SEL252_ALL);
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT); /* Active trigger: VSYNC */
...
SNP24_set_video_src(Hsnp24, SNP24_VIDSRC_SRC1, SNP24_SEL252_ALL);
SNP24_capture(Hsnp24, SNP24_START_AND_WAIT); /* Active trigger: trigger pin */

BUGS / NOTES

There are no known bugs. Note that if more than one programmable output is required the VSYNC and pixel
clock pins can also be used via a call to SNP24_set_ctrlout.

SEE ALSO

SNP24_is_capture_complete, SNP24_is_trigger_started, SNP24_set_capture, SNP24_set_TTL422,
SNP24_set_sync, SNP24_set_clk, SNP24_set_timer.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_TTL422 86

SNP24_set_TTL422

USAGE

Terr SNP24_set_TTL422(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required TTL or RS-422 mode.

DESCRIPTION

This function sets the software control of TTL or RS-422 input and output formats for HSYNC, VSYNC,
PCLK and trigger. For many applications this function need not be called directly, because SNP24_initialize
calls it with the parameter SNP24_TTL422_INIT. Even if it is called, it need only be called once, because it
does not directly control TTL / RS-422 formats, instead it informs the software of the jumper settings on
Snapper-24. See the Snapper! Installation Guide for details of setting these jumpers.

The mode parameter should be formed by ‘OR’ing the required options from the list below:

MODE

SNP24_TTL422_INIT This sets the formats to match the default jumper settings on Snapper-24 as
shipped, i.e. HSYNC, VSYNC and trigger as TTL; and PCLK as RS-422.

SNP24_TTL422_HSYNC_422 This specifies that the HSYNC format is RS-422.

SNP24_TTL422_HSYNC_TTL This specifies that the HSYNC format is TTL.

SNP24_TTL422_VSYNC_422 This specifies that the VSYNC format is RS-422.

SNP24_TTL422_VSYNC_TTL This specifies that the VSYNC format is TTL.

SNP24_TTL422_TRIG_422 This specifies that the trigger format is RS-422.

SNP24_TTL422_TRIG_TTL This specifies that the trigger format is TTL.

SNP24_TTL422_PCLK_422 This specifies that the PCLK format is RS-422.

SNP24_TTL422_PCLK_TTL This specifies that the PCLK format is TTL.

PARAMETER INTERACTION

When combinations of parameters are passed in one call to SNP24_set_TTL422 the routine will interpret the
combinations in a ‘sensible’ way whenever possible, or return an error if the combinations are invalid. See
the examples given below.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

Select HSYNC as RS-422 format:

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_TTL422 87

SNP24_set_TTL422(Hsnp24, SNP24_TTL422_HSYNC_422);

Select PCLK as TTL format, overriding the default set by SNP24_TTL422_INIT:

SNP24_set_TTL422(Hsnp24, SNP24_TTL422_INIT | SNP24_TTL422_PCLK_TTL);

BUGS / NOTES

There are no known bugs.

SEE ALSO

SNP24_set_clk, SNP24_set_sync, SNP24_set_trigger.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_video_src 88

SNP24_set_video_src

USAGE

Terr SNP24_set_video_src(Thandle Hsnp24, Tparam mode, int sel252)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required mode.

sel252 Which channels to update.

DESCRIPTION

This function controls the video source to the ADCs. For many applications this function need not be called
directly, because SNP24_initialize calls it with sel252 set to SNP24_252_ALL and mode set to
SNP24_VIDSRC_INIT.

SEL252 OPTIONS

This controls which of the three ADCs for the red, green and blue channels are affected by this call. The
parameter can be one of SNP24_252_RED, SNP24_252_GRN or SNP24_252_BLU which only changes the
source for one ADC; or SNP24_252_ALL which changes the source to all three ADCs in parallel for speed.
SNP24_252_ALL would normally be used for RGB or YCrCb video sources.

MODE

SNP24_VIDSRC_INIT This selects the first of the four possible inputs as the video source for all the
ADCs. sel252 must be set to SNP24_252_ALL.

SNP24_VIDSRC_SRC1 This selects the first of the four possible inputs as the video source for the selected
ADC(s).

SNP24_VIDSRC_SRC2 This selects the second of the four possible inputs as the video source for the
selected ADC(s).

SNP24_VIDSRC_SRC3 This selects the third of the four possible inputs as the video source for the selected
ADC(s).

SNP24_VIDSRC_SRC4 This selects the fourth of the four possible inputs as the video source for the
selected ADC(s).

If sync off video is selected (see SNP24_set_sync), and sel252 is set to SNP24_252_ALL, the sync source will
be switched to the new video source. Similarly, if the trigger source or the control outputs are set to change
with video source (see SNP24_set_trigger and SNP24_set_ctrlout) they will change automatically.

SNAPPER-8 DIFFERENCES

On a Snapper-8 sel252 must be either SNP24_252_ALL or SNP24_252_RED, which are treated identically.

RETURNS

Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_video_src 89

ASLERR_PARAM_CONFLICT More than one mode parameter has been passed in, which is not allowed
because the parameters are mutually exclusive, or SNP24_VIDSRC_INIT
has been passed without sel252 being set to SNP24_252_ALL.

ASLERR_NOT_SUPPORTED A Snapper-8 is being used, and sel252 has been set to SNP24_252_GRN or
SNP24_252_BLU.

EXAMPLES

The following code will set all ADCs to digitize input channel 2:

SNP24_set_vidsrc(Hsnp24, SNP24_VIDSRC_SRC2, SNP24_252_ALL);

BUGS / NOTES

There are no known bugs.

SEE ALSO

-

Snapper-24 Programmer’s Manual v4.0.1 SNP24_set_video_standard 90

SNP24_set_video_standard

USAGE

Terr SNP24_set_video_standard(Thandle Hsnp24, Tparam mode)

ARGUMENTS

Hsnp24 Handle to Snapper-24.

mode Required video standard.

DESCRIPTION

This function is used to inform the Snapper-24 software of the video standard in use, so that subsequent calls
to functions such as SNP24_set_sync work correctly.

MODE

SNP24_CCIR_DEFAULT Set the video standard to CCIR. This is used in the UK and most of Western
Europe, and has a 50Hz frame rate.

SNP24_EIA_DEFAULT Set the video standard to EIA. This is used in the USA and Japan, and has a
60Hz frame rate. This mode is automatically selected when using line scan
mode.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-24 handle is invalid.

EXAMPLES

Select EIA operation:

SNP24_set_video_standard(Hsnp24, SNP24_EIA_DEFAULT);

BUGS / NOTES

It is necessary to call SNP24_set_clk and SNP24_set_sync with the initialize parameter to reset the PLL and
sync generators to the new video standard - SNP24_set_video_standard does not make these calls.

SEE ALSO

SNP24_is_50Hz, SNP24_set_clk, SNP24_set_sync.

	Introduction
	Concepts
	CONVENTIONAL CAMERAS
	SINGLE CAPTURE MODE
	SEQUENCE MODE
	CALLBACKS METHOD
	LINE SCAN MODE

	Function Overview
	INITIALIZATION FUNCTION
	IMAGE CAPTURE FUNCTIONS
	CONFIGURATION FUNCTIONS
	PARAMETER READBACK FUNCTIONS
	MISCELLANEOUS FUNCTIONS

	Error Returns
	Sample Applications
	MINIMAL PROGRAM
	SEQUENCE MODE EXAMPLE
	SEQUENCE MODE CODE FRAGMENT – USING CALLBACKS

	Function List
	INITIALIZATION FUNCTION
	IMAGE CAPTURE FUNCTIONS
	CONFIGURATION FUNCTIONS
	PARAMETER READBACK FUNCTIONS
	MISCELLANEOUS FUNCTIONS

	SNP24_auto_gain
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	SNP24_auto_offset
	USAGE
	ARGUMENTS
	SEE ALSO

	SNP24_capture
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_active_area
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_ID
	USAGE
	ARGUMENTS
	SEE ALSO

	SNP24_get_levels
	USAGE
	ARGUMENTS
	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_LUTs
	USAGE
	ARGUMENTS
	SEL252 OPTIONS

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_parameter
	USAGE
	ARGUMENTS
	PARAMETER

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_property
	USAGE
	ARGUMENTS
	PROPERTY

	SNP24_get_rev
	USAGE
	ARGUMENTS
	SEE ALSO

	SNP24_get_ROI
	USAGE
	ARGUMENTS

	SNP24_get_ROI_max
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_get_subsample
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_initialize
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_is_50Hz
	USAGE
	ARGUMENTS

	SNP24_is_capture_complete
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_is_data_ready
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_is_field1_captured
	USAGE
	ARGUMENTS
	RETURNS
	BUGS / NOTES
	SEE ALSO

	SNP24_is_field1_incoming
	USAGE
	ARGUMENTS

	SNP24_is_locked
	USAGE
	ARGUMENTS

	SNP24_is_sequence_dropped
	SNP24_is_sequence_mode
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_is_trigger_started
	USAGE
	ARGUMENTS

	SNP24_is_vsync_asserted
	USAGE
	ARGUMENTS

	SNP24_lm1882_prog
	
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_read_video_data
	USAGE
	ARGUMENTS
	TMG_ACTION

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_reset_read_pointer
	USAGE
	ARGUMENTS
	MODE

	SNP24_set_active_area
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_callback
	USAGE
	ARGUMENTS
	MODE
	CALLBACK FUNCTION DEFINITION

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_capture
	USAGE
	ARGUMENTS
	DESCRIPTION
	INITIALIZATION
	DEINTERLACE CONTROL
	SUB˚SAMPLE CONTROL (AREA SCAN MODE)
	SUB˚SAMPLE CONTROL (LINE SCAN MODE)
	INITIAL FIELD CONTROL
	SEQUENCE CONTROL

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_clamp
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_clk
	USAGE
	ARGUMENTS
	MODE
	PARAMETER INTERACTION

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_ctrlout
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_format
	USAGE
	ARGUMENTS
	SNAP_FORMAT

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_image
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_interrupts
	USAGE
	ARGUMENTS
	TYPE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_levels
	USAGE
	ARGUMENTS
	LEVELS
	MODE

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_linescan_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_linescan_freq
	USAGE
	ARGUMENTS

	SNP24_set_LUTs
	USAGE
	ARGUMENTS
	SEL252 OPTIONS
	MODE

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_parameter
	USAGE
	ARGUMENTS
	PARAMETER

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_pix_per_line
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_ROI
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_ROI_rounding
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_sync
	USAGE
	ARGUMENTS
	MODE
	PARAMETER INTERACTION

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_timer
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_trigger
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_TTL422
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_video_src
	USAGE
	ARGUMENTS
	SEL252 OPTIONS
	MODE

	SNAPPER˚8 DIFFERENCES
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	SNP24_set_video_standard
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

