
v4.0.1

SNAPPER-DIG16 Library
(for Snapper-Dig16 and Snapper-PMC-Dig16)

Programmer’s Manual

DataCell Limited

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Disclaimer

While every precaution has been taken in the preparation of this manual, DataCell Ltd assumes no responsibility for
errors or omissions. DataCell Ltd reserves the right to change the specification of the product described within this
manual and the manual itself at any time without notice and without obligation of DataCell Ltd to notify any person
of such revisions or changes.

Copyright Notice

Copyright  1994-1999 DataCell Ltd and Active Silicon Ltd. All rights reserved. This document may not in whole
or in part, be reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or
translated into any language or computer language without the prior written consent of DataCell Ltd.

Trademarks

“Apple”, “Macintosh” and “MacOS” are trademarks of Apple Computer Inc. “AMCC” is a registered trademark of
Applied Micro Circuits Corporation. “Dallas” is a registered trademark of Dallas Semiconductor Corporation.
“Dell” is a registered trademark of Dell Computer Corporation. “Flash Graphics” and “X-32VM” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks” and “CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS”, “Windows”, “Windows NT”, “Windows 95”, “Windows 98”,
“Win32”, “Visual C++” are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is a registered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris”
are registered trademarks of Sun Microsystems Inc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks” and “Tornado” are registered trademarks of Wind River
Systems Inc. “Xilinx” is a registered trademark of Xilinx.
All other trademarks and registered trademarks are the property of their respective owners.

Part Information

Part Number: SNP-MAN-DIG16-LIB

Version v4.0.1 March 1999

Printed in the United Kingdom.

Contact Details

Europe & ROW

USA

Web
Sales
Support

Web
Sales
Support

www.datacell.co.uk
info@datacell.co.uk
techsupport@datacell.co.uk

www.datacell.com
info@datacell.com
techsupport@datacell.com

Head Office:
DataCell Limited.
Falcon Business Park, 40 Ivanhoe Road,
Finchampstead, Berkshire, RG40 4QQ, UK

Tel +44 (0) 1189 324324
Fax +44 (0) 1189 324325

http://www.datacell.co.uk/
http://www.datacell.co.uk/
mailto:info@datacell.co.uk
mailto:techsupport@datacell.co.uk
http://www.datacell.com/
http://www.datacell.co.uk/
mailto:info@datacell.com
mailto:techsupport@datacell.com

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Snapper-DIG16 Programmer’s Manual v4.0.1 i

Table of Contents

Introduction... 1

Concepts.. 2

Function Overview.. 3

Error Returns... 4

Sample Applications ... 5

Function List ... 8

DIG16_capture_to_image ... 9

DIG16_get_active_area .. 11

DIG16_get_camera_LSB.. 12

DIG16_get_camera_MSB... 13

DIG16_get_camera_type .. 14

DIG16_get_capture_status.. 15

DIG16_get_ctrl_io_status ... 17

DIG16_get_data_width ... 18

DIG16_get_FIFO_status ... 19

DIG16_get_ID .. 20

DIG16_get_LUT_max_addr ... 21

DIG16_get_parameter... 22

DIG16_get_property ... 24

DIG16_get_rev ... 25

DIG16_get_ROI.. 26

DIG16_get_ROI_max... 27

DIG16_get_subsample.. 28

DIG16_initialize.. 29

DIG16_initialize_LUTs .. 32

DIG16_is_field1_captured.. 33

DIG16_is_trigger_started.. 34

DIG16_read_video_data ... 35

DIG16_set_active_area... 37

DIG16_set_alignment ... 39

DIG16_set_callback.. 41

DIG16_set_camera_info ... 43

DIG16_set_capture ... 45

DIG16_set_clk .. 49

DIG16_set_comms.. 51

DIG16_set_ctrl_io... 53

Snapper-DIG16 Programmer’s Manual v4.0.1 ii

DIG16_set_data_stream_ctrl ...56

DIG16_set_format ...58

DIG16_set_image ..60

DIG16_set_image_data_width ..61

DIG16_set_interrupts ..62

DIG16_set_linescan_ctrl ...65

DIG16_set_LUTs ..67

DIG16_set_parameter..70

DIG16_set_ROI...72

DIG16_set_ROI_rounding...74

DIG16_set_timer ...76

DIG16_set_trigger ...79

Camera Specific Functions ..81

DIG16_set_C4742_ctrl..82

DIG16_set_mplus_ctrl...84

DIG16_set_X1400_ctrl ...86

Snapper-DIG16 Programmer’s Manual v4.0.1 iii

Snapper-DIG16 Programmer’s Manual v4.0.1 Introduction 1

Introduction

This manual describes the Snapper-DIG16 function library. These functions allow the capture of video images,
using a Snapper-DIG16 module and one of a number of different host hardware platforms, and are independent of
the host hardware platform. The Snapper-DIG16 function library also applies to the Snapper-PMC-DIG16, and
unless stated otherwise, all references to Snapper-DIG16 in this manual also apply to Snapper-PMC-DIG16.

Snapper-DIG16 is referred to by a unique handle of type Thandle (a 32 bit unsigned integer). It is used by all the
software to identify a particular Snapper board and its associated data structures. This handle is automatically
generated when a Bus Interface Board detects it has a Snapper module fitted.

Snapper-DIG16 Programmer’s Manual v4.0.1 Concepts 2

Concepts

The Snapper-DIG16 hardware is different from other Snappers (such as Snapper-16 and Snapper-24) because it does
not have a frame store. This is because some digital cameras generate very large images, so a frame store would
need to be very large to store the image. Instead, Snapper-DIG16 uses fast baseboards such as those for PCI or SBus
to transfer data in real time from the Snapper to host computer memory. Therefore the host memory is acting as the
frame store. This use of host memory means that DIG16_capture_to_image replaces for instance both
SNP24_capture and SNP24_read_video_data except for use with line scan cameras where DIG16_read_video_data
is still used. Note that DIG16_capture_to_image does not support TMG strip processing.

Digital cameras generally use RS-422 synchronous control signals, and the timing of these signals varies between
cameras. Therefore specific cameras are supported, and Snapper-DIG16 is set up for a camera by calling
DIG16_initialize with the camera model as a parameter. Cameras which are not supported by DIG16_initialize can
be set up from the application by direct calls to low level line scan control functions - see Technical Note 5
“Snapper-DIG16: Porting New Cameras” and the list of functions in the section “Function List”.

CONVENTIONAL CAMERAS

“Conventional cameras” are “area scan” cameras which generate images of m pixels by n lines (e.g. 1024 by 1000).
Most digital area scan cameras are progressive scan, but interlaced cameras are also supported.

LINE SCAN CAMERAS

Line scan cameras only capture one line of data at a time, but this line is generally long compared with area scan
cameras, for instance a typical line scan image might be 2048 pixels by 1 line.

The application can control how many lines are read in at a time into one ‘image’ (function DIG16_set_ROI). At a
minimum, one line can be captured per read - this gives minimum latency between a line being captured and it being
ready for processing in host computer memory, but there will be a higher software overhead. The maximum number
of lines per bank depends on how much host computer memory is available to read the lines into (e.g. 1024 lines of a
2048 pixel camera needs 2 Mbytes of memory for TMG_Y8 format). A large number of lines gives a low processing
overhead, but a larger latency. Typical values might be 32 or 64 lines per bank.

An additional issue concerning lines per image is that the current Snapper-DIG16 libraries for MS-DOS and
Microsoft Windows 3.1 do not transfer data under interrupt control. Therefore under these operating systems, for as
long as it takes to process the lines in one image, it is not possible to read any data out of the FIFO buffer on the
Snapper-DIG16. Since the camera may be continuously filling up this FIFO it is possible that the FIFO will
overflow if the setting of lines per image is too large. The function DIG16_get_ROI_max can be used to indicate
how many lines will fit into the FIFO as a guide for optimising applications.

Most of the Snapper-DIG16 library functions can be used for both area scan and line scan modes. Where a function
can only be used in one mode this is mentioned in the BUGS/ NOTES section of each function description.

See the Camera Specific Installation Notes in the Installation section of the manual for the cable pinouts for
supported line scan cameras.

DATA STREAM MODE

In data stream mode the Snapper-DIG16 treats the data from the camera as a raw data stream. Data is acquired
based on two enable signals, line enable and frame enable, and the function DIG16_set_data_stream_ctrl controls
which of these signals should be used to enable incoming data to be stored.

This mode is provided to support cameras which are highly programmable, and for instance can output multiple
regions of interest from one image, or allow image dimensions to be changed on a frame by frame basis.

Therefore in data stream mode there are no region of interest functions, instead the function DIG16_set_parameter
sets the number of pixels to capture. It is the responsibility of the application to correctly interpret the data based on
the known configuration of the camera.

Snapper-DIG16 Programmer’s Manual v4.0.1 Function Overview 3

Function Overview

The functions are split into five sections - Initialization, Image Capture, Configuration, Parameter Readback and
Camera Specific.

INITIALIZATION FUNCTION

The initialization function configures Snapper-DIG16 to default settings. It accepts a parameter indicating which
camera is connected so that Snapper-DIG16 is configured for that camera.

IMAGE CAPTURE FUNCTIONS

The image capture functions control capture of images and provide functions to test the capture status.

The DIG16_capture_to_image routine controls the capture of video data into an image structure in host memory.
This image structure is set up by DIG16_set_image. Capture status is indicated by DIG16_get_capture_status,
DIG16_is_field1_captured and DIG16_is_trigger_started. In line scan mode the function DIG16_read_video_data
is used in conjunction with DIG16_capture_to_image to transfer data into an image structure in host memory.

CONFIGURATION FUNCTIONS

These functions control the configuration of the Snapper-DIG16.

The capture mode used by the next DIG16_capture_to_image call is controlled by DIG16_set_capture. This allows
control of the frame/field mode and sub-sample factor. Image capture can be triggered from external hardware by
using the DIG16_set_trigger function. Selected regions of the image can be captured by a call to DIG16_set_ROI.

The LUTs on Snapper-DIG16 are controlled by DIG16_set_LUTs, and the format of the captured image by
DIG16_set_format. DIG16_set_timer allows camera exposure control. DIG16_set_parameter allows general
parameters to be set.

Interrupt control of acquisition is possible using DIG16_set_interrupts and DIG16_set_callback.

The remaining functions will not get called in a typical application because they are called by DIG16_initialize with
the correct settings for the camera. These functions are DIG16_set_active_area, DIG16_set_alignment,
DIG16_set_camera_info, DIG16_set_comms, DIG16_set_ctrl_io, DIG16_set_clk, DIG16_set_data_stream_ctrl,
DIG16_set_image_data_width, DIG16_set_linescan_ctrl, and DIG16_set_ROI_rounding.

PARAMETER READBACK FUNCTIONS

Some of these functions are intended to avoid the need for an application to keep shadow copies of Snapper-DIG16
settings. These are DIG16_get_active_area, DIG16_get_camera_LSB, DIG16_get_camera_MSB,
DIG16_get_camera_type, DIG16_get_data_width, DIG16_get_ROI and DIG16_get_subsample.

DIG16_get_LUT_max_addr and DIG16_get_ROI_max return maximum settings for the camera in use, and
DIG16_get_property returns hardware and firmware information about the Snapper-DIG16.

DIG16_get_ID and DIG16_get_rev return the hardware ID and revision of the Snapper-DIG16 in use.

Finally DIG16_get_parameter returns general information about the Snapper-DIG16.

CAMERA SPECIFIC FUNCTIONS

These provide control of operation modes of individual cameras. The list of these functions will be extended as
more cameras are supported.

Snapper-DIG16 Programmer’s Manual v4.0.1 Error Returns 4

Error Returns

Almost all of the Snapper-DIG16 library functions return a Terr apart from several Boolean functions. Terr is a 32
bit unsigned integer, with the bit positions defined as follows:

31 to 24 Hardware identifier/revision (returned on error, otherwise 0 is returned). This is used to allow a top
level calling function to determine the library in which the error occurred, and is actually read from the
hardware itself.

Clearing bits 26 to 24 leaves the hardware identifier, which is:
on Snapper-DIG16 - 0xC0 (#defined as DIG16_ID)
on Snapper-PMC-DIG16 - 0xC8 (#defined as DIG16_PMC_ID)

Bits 26 to 24 give the hardware revision level. Initial Snapper-DIG16s have the value 0x00.

23 to 16 Error number, otherwise 0 if no error.

15 to 0 Function return value.

If a function call is successful, it returns ASL_OK (which is #defined as 0) or the requested parameter. If an error
occurs, an error number is returned in bits 23 to 16 along with the hardware or library identifier in bits 31 to 24. See
the “Snapper Error Handling Programmer’s Manual” in the Developer’s Guide section of the Snapper Developer’s
Manual for more details on error returns.

Snapper-DIG16 Programmer’s Manual v4.0.1 Sample Applications 5

Sample Applications

The following examples are minimal programs for area scan and line scan modes. As with all sample code in this
manual, error handling has been omitted for clarity, but apart from not handling errors cleanly these are usable
programs. The Snapper SDK includes sample applications, both as executables and as source code, which provide a
useful reference of ‘real’ code and are probably the best starting point for developing custom applications. For
examples of how to display images under different operating systems see the examples in the TMG Library
Programmer’s Manual.

AREA SCAN MODE EXAMPLE

The following program captures an image from a Kodak Megaplus 1.4 camera and saves it to a file:

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hdig16; /* Handle to Snapper-DIG16 */
 Thandle Hbase; /* Handle to baseboard */
 Thandle Hvid_image; /* Handle to image */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hdig16 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();

 /* Set required Snapper mode */
 DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS14, 8);

 /* Set up image parameters */
 DIG16_set_image(Hdig16, Hvid_image);

 /* Capture image and write it to a file */
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_START_AND_WAIT);
 TMG_image_set_outfilename(Hvid_image, "y8.tif");
 TMG_image_write(Hvid_image, TMG_NULL, TMG_TIFF, TMG_RUN);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Snapper-DIG16 Programmer’s Manual v4.0.1 Sample Applications 6

LINE SCAN MODE EXAMPLE

The following program demonstrates the use of line scan mode using a Dalsa CLCx series camera and synchronous
readout of data. For a more detailed example using dual buffers (in host memory) and interrupt driven acquisition,
see the 32 bit Windows application example “D16”.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hdig16, Hbase, Hvid_image; /* Handles to Snapper, baseboard & image */
 Tboolean finished = FALSE; /* Controls when to stop line scan capture */
 i16 roi_array[ASL_SIZE_2D_ROI]; /* For ROI set and get calls */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hdig16 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();

 /* Set Snapper mode for a Dalsa CLC camera with 2048 pixel CCD. We need to
 * override the default active area set by DIG16_initialize, and then set the ROI
 */
 DIG16_initialize(Hdig16, DIG16_DALSA_CLCX_1CH, 8);
 DIG16_get_active_area(Hdig16, roi_array);
 roi_array[ASL_ROI_X_LENGTH] = 2048;
 DIG16_set_active_area(Hdig16, roi_array);
 DIG16_get_ROI_max(Hdig16, roi_array);
 DIG16_set_ROI(Hdig16, DIG16_ROI_SET, roi_array);
 DIG16_set_image(Hdig16, Hvid_image);
 BASE_set_timer(Hbase, BASE_TIMER_ASTABLE, (ui32) 1000); /* 1 line every 2000us */

 /* Start continuous capture of images - first prepare DIG16_read_video_data
 * to receive data, then start the actual capture
 */
 DIG16_read_video_data(Hdig16, Hvid_image, TMG_INIT);
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_START_AND_RETURN);
 TMG_image_set_flags(Hvid_image, TMG_LOCKED, TRUE); /* Speed up loop */

 /* Now continuously read in the data as it is captured */
 while (finished == FALSE)
 {
 DIG16_read_video_data(Hdig16, Hvid_image, TMG_STRIP); /* Read the image */

 /* Process or display the image - here an imaginary image processing routine
 * is called - to use the example replace this line with some real code
 */
 finished = process_image(Hvid_image);
 }

 /* Stop the continuous capturing, then inform DIG16_read_video_data that no more
 * data will be read in this continuous capture. Finally free memory and exit
 */
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_CAPTURE_END);
 DIG16_read_video_data(Hdig16, Hvid_image, TMG_RESET);

 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Snapper-DIG16 Programmer’s Manual v4.0.1 Sample Applications 7

DATA STREAM MODE EXAMPLE

The following program demonstrates the use of data stream mode. This application cannot be used under MS-DOS
or Windows 3.1, where explicit calls must be made to DIG16_read_video_data. See DIG16_read_video_data for
more information and example code.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hdig16, Hbase, Hvid_image; /* Handles to Snapper, baseboard & image */
 Tboolean finished = FALSE; /* Controls when to stop capture */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hdig16 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();

 /* Setup Snapper in data stream mode, and request 10000 pixels per capture, and
 * use both line and frame enables to acquire data
 */
 DIG16_initialize(Hdig16, DIG16_AIA_DATA_STREAM, 8);
 DIG16_set_data_stream_ctrl(Hdig16, DIG16_DSTRM_LINE_ACQ_ENABLE |

DIG16_DSTRM_FRAME_ACQ_ENABLE | DIG16_DSTRM_LINE_START_ENABLE |
DIG16_DSTRM_FRAME_START_ENABLE);

 DIG16_set_parameter(Hdig16, DIG16_PIXEL_COUNT, 10000);
 DIG16_set_image(Hdig16, Hvid_image);
 TMG_image_set_flags(Hvid_image, TMG_LOCKED, TRUE); /* Speed up loop */

 /* Now continuously capture data */
 while (finished == FALSE)
 {
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_START_AND_RETURN);

 /* Send any commands here needed to make camera send 10000 pixels of data */

 /* Wait for image capture complete - in a typical application
 * the previous image might get processed at this point
 */
 while (ASL_get_ret(DIG16_get_capture_status(Hdig16)) !=

 DIG16_CAPTURE_COMPLETE)
 {}

 /* Update ‘finished’ boolean here */
 }

 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Snapper-DIG16 Programmer’s Manual v4.0.1 Function List 8

Function List

Functions Supported In All Modes Functions Supported In Some Modes

INITIALIZATION FUNCTION
A = AREA SCAN D = DATA STREAM L = LINE
SCAN

DIG16_initialize
DIG16_initialize_LUTs

IMAGE CAPTURE FUNCTIONS

DIG16_capture_to_image
DIG16_get_capture_status
DIG16_is_trigger_started
DIG16_set_image

DL
A

DIG16_read_video_data
DIG16_is_field1_captured

CONFIGURATION FUNCTIONS

DIG16_set_alignment
DIG16_set_callback
DIG16_set_camera_info
DIG16_set_capture
DIG16_set_clk
DIG16_set_comms
DIG16_set_ctrl_io
DIG16_set_format
DIG16_set_image_data_width
DIG16_set_interrupts
DIG16_set_LUTs
DIG16_set_parameter
DIG16_set_timer
DIG16_set_trigger

AL
D
L

AL
AL

DIG16_set_active_area
DIG16_set_data_stream_ctrl
DIG16_set_linescan_ctrl
DIG16_set_ROI
DIG16_set_ROI_rounding

PARAMETER READBACK FUNCTIONS

DIG16_get_camera_LSB
DIG16_get_camera_MSB
DIG16_get_camera_type
DIG16_get_ctrl_io_status
DIG16_get_data_width
DIG16_get_FIFO_status
DIG16_get_ID
DIG16_get_LUT_max_addr
DIG16_get_parameter
DIG16_get_property
DIG16_get_rev
DIG16_get_subsample
DIG16_is_field1_captured
DIG16_is_trigger_started

AL
AL
AL

DIG16_get_active_area
DIG16_get_ROI
DIG16_get_ROI_max

The functions are described in alphabetical order in the following pages.

See the end of the manual for camera specific functions.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_capture_to_image 9

DIG16_capture_to_image

USAGE

Terr DIG16_capture(Thandle Hdig16, Thandle Himage, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

Himage Handle to image.

mode Required capture mode.

DESCRIPTION

This function is used to both initiate a video capture on Snapper-DIG16 and transfer the captured data to an
Himage. The module must be configured in the required mode before this routine is called.

If the operating system supports threads (i.e. independent paths of control within a program or process) the
data transfer is implemented as a separate thread.

MODE

DIG16_START_AND_WAIT The function does not return until capture and data transfer is complete,
including waiting for an external trigger if selected. This parameter is not
supported in line scan mode.

DIG16_START_AND_RETURN The capture is initiated, a data transfer thread started, then control
immediately returns to the calling function. This mode allows the time
taken by the data transfer to be used by the software to perform other
processing. The controlling program must call
DIG16_get_capture_status when it has completed its processing.
In line scan mode this parameter must always be to start a capture.
In area scan mode this option is not supported if the operating system does
not support threads (e.g. MS-DOS and Windows 3.1).

DIG16_CAPTURE_END A capture previously started by DIG16_START_AND_RETURN will be
terminated on completion of acquisition of the current image. This
parameter is needed in line scan mode to stop the acquisition of data.

DIG16_CAPTURE_ABORT A capture previously started by DIG16_START_AND_RETURN will be
terminated. This mode must be used to stop the data transfer thread if
DIG16_get_capture_status has not returned
DIG16_CAPTURE_COMPLETE.

This parameter is not supported if the operating system does not support
threads (e.g. MS-DOS and Windows 3.1).

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_NOT_SUPPORTED DIG16_START_AND_RETURN was requested in area scan mode for an
operating system which does not support threads.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_capture_to_image 10

ASLERR_TIMEOUT The capture timed out.

If external trigger is disabled then this error indicates that the hardware did
not complete the required video capture. This is probably due to a lack of
video, or the wrong clock source being selected.

If external trigger is enabled then this error could also indicate that an active
edge of the external trigger source was not detected within the timeout
period.

EXAMPLES

The following code will capture and return when capture is complete:

while (DisplayLive == TRUE)
{
 DIG16_capture_to_image(Hdig16, Himage, DIG16_START_AND_WAIT);
 process_image(Himage, ...);
}

The following code will more efficiently process one image whilst capturing the next:

DIG16_capture_to_image(Hdig16, Himage2, DIG16_START_AND_WAIT);
while (DisplayLive == TRUE)
{
 DIG16_capture_to_image(Hdig16, Himage1, DIG16_START_AND_RETURN);
 process_image(Himage2, ...);
 while (ASL_get_ret(DIG16_get_capture_status(Hdig16)) !=

DIG16_CAPTURE_COMPLETE)
 {}
 DIG16_capture_to_image(Hdig16, Himage2, DIG16_START_AND_RETURN);
 process_image(Himage1, ...);
 while (ASL_get_ret(DIG16_get_capture_status(Hdig16)) !=

DIG16_CAPTURE_COMPLETE)
 {}
}

BUGS / NOTES

If timeouts are required for capture it is recommended that they are controlled within the application by using
the DIG16_START_AND_RETURN parameter together with the clock functions available within the
operating system in use.

If external triggers are enabled (see DIG16_set_trigger) then the function will not return until the external
trigger event has occurred, even if DIG16_capture_to_image is called with DIG16_START_AND_RETURN.
An alternative method is to disable triggers for acquisition, and use the external trigger input as an interrupt
source. The interrupt service routine can then call DIG16_capture_to_image with
DIG16_START_AND_RETURN which will then return immediately.

SEE ALSO

DIG16_set_capture, DIG16_get_capture_status, DIG16_is_trigger_started, DIG16_set_trigger,
DIG16_read_video_data.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_active_area 11

DIG16_get_active_area

USAGE

Terr DIG16_get_active_area(Thandle Hdig16, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the active area as set by the most recent call to DIG16_set_active_area and returns it in
the roi array.

For conventional area scan cameras the pixel referenced by ASL_ROI_X_START and ASL_ROI_Y_START is
subsequently used by the ROI functions as pixel [0,0].

In line scan mode ASL_ROI_Y_START is not used, and is returned set to 0; and ASL_ROI_Y_LENGTH is
returned set to 1. The pixel referenced by ASL_ROI_X_START is used by the ROI functions as pixel 0.

All the coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones. The horizontal
and vertical resolutions are 1 pixel and 1 line respectively.

RETURNS

This function returns the current ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

To display the active area:

DIG16_get_active_area(Hdig16, roi);
printf(“\nActive area X start is %d”, (int)roi[ASL_ROI_X_START]);
printf(“\nActive area Y start is %d”, (int)roi[ASL_ROI_Y_START]);
printf(“\nActive area X length is %d”, (int)roi[ASL_ROI_X_LENGTH]);
printf(“\nActive area Y length is %d”, (int)roi[ASL_ROI_Y_LENGTH]);

BUGS / NOTES

There are no known bugs.

This function is not supported in data stream mode.

SEE ALSO

DIG16_set_active_area, DIG16_get_ROI, DIG16_get_ROI_max, DIG16_set_ROI.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_camera_LSB 12

DIG16_get_camera_LSB

USAGE

Terr DIG16_get_camera_LSB(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the bit which the LSB of the camera is connected to, as set by DIG16_set_camera_info.
For two channel cameras the LSB of the first channel is returned.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ret(DIG16_get_camera_LSB(Hdig16)) == 7)
 printf(“\Camera LSB connected to bit MSB-7”);

BUGS / NOTES

The <camera lsb> is returned in the lower 8 bits, if successful.

There are no known bugs.

SEE ALSO

DIG16_get_camera_MSB, DIG16_get_data_width.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_camera_MSB 13

DIG16_get_camera_MSB

USAGE

Terr DIG16_get_camera_MSB(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the bit which the MSB of the camera is connected to, as set by DIG16_set_camera_info.
For two channel cameras the MSB of the first channel is returned.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ret(DIG16_get_camera_MSB(Hdig16)) == 0)
 printf(“\Camera MSB connected to bit MSB”);

BUGS / NOTES

The <camera msb> is returned in the lower 8 bits, if successful.

There are no known bugs.

SEE ALSO

DIG16_get_camera_LSB, DIG16_get_data_width.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_camera_type 14

DIG16_get_camera_type

USAGE

Terr DIG16_get_camera_type(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the camera type in use, as set by DIG16_initialize, for example
DIG16_KODAK_MPLUS14, DIG16_PULNIX_TM9700, etc.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ret(DIG16_get_camera_type(Hdig16)) == DIG16_KODAK_MPLUS14)
 printf(“\Kodak Megaplus 1.4 in use”);

BUGS / NOTES

The <camera type> is returned in the lower 16 bits, if successful.

There are no known bugs.

SEE ALSO

DIG16_initialize.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_capture_status 15

DIG16_get_capture_status

USAGE

Terr DIG16_get_capture_status(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required mode.

DESCRIPTION

This function is used to test whether the current video capture and data transfer initiated by
DIG16_capture_to_image has completed. This is used in conjunction with DIG16_capture_to_image called
with the DIG16_START_AND_RETURN parameter.

Note that it is important to call DIG16_get_capture_status even if you already know that the capture has
completed. This is because the function call, on detecting that capture has completed, performs some tidy up
code before returning.

MODE

DIG16_START_AND_RETURN This tests the capture status and returns immediately with the status. If the
data transfer has completed it returns DIG16_CAPTURE_COMPLETE if
the capture was successful, or the error return from the read thread if it
was not. It returns DIG16_CAPTURE_IN_PROGRESS from the time that
a capture is initiated until the data transfer completes.
DIG16_CAPTURE_IN_PROGRESS is also returned after the capture has
been initiated, but before a valid external trigger has occurred.

DIG16_START_AND_WAIT This does not return until the data transfer has completed, when it returns
DIG16_CAPTURE_COMPLETE if the capture was successful, or the
error return from the read thread if it was not. Note that internally the
function uses the operating system’s thread synchronisation system to wait
for the capture to complete, i.e. it does not use a polling loop, so it uses
very little CPU time.

This function is not needed for operating systems which do not support threads (e.g. MS-DOS and
Windows 3.1) because they do not support DIG16_START_AND_RETURN.

RETURNS

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_NOT_SUPPORTED Called for an operating system which does not support threads.

ASLERR_CAPTURE_COMPLETE The capture has successfully completed.

ASLERR_CAPTURE_IN_PROGRESS The capture has not yet completed.

The function will also return any errors from the read thread on completion of the thread.

EXAMPLES

The following code initiates a capture, then processes the previous frame whilst capturing the next, and then
waits for the capture to complete before reading the new frame:

DIG16_capture_to_image(Hdig16, Himage2, DIG16_START_AND_WAIT);
while (DisplayLive == TRUE)
{

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_capture_status 16

 DIG16_capture_to_image(Hdig16, Himage1, DIG16_START_AND_RETURN);
 process_image(Himage2, ...);
 DIG16_get_capture_status(Hdig16, DIG16_START_AND_WAIT);
 DIG16_capture_to_image(Hdig16, Himage2, DIG16_START_AND_RETURN);
 process_image(Himage1, ...);
 DIG16_get_capture_status(Hdig16, DIG16_START_AND_WAIT);
}

BUGS / NOTES

There are no known bugs.

This function also manages the synchronisation of the data transfer thread. Therefore if
DIG16_get_capture_status does not return DIG16_CAPTURE_COMPLETE then DIG16_capture_to_image
must be called with the parameter DIG16_ABORT_CAPTURE to tidy up the data transfer thread.

SEE ALSO

DIG16_capture_to_image.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_ctrl_io_status 17

DIG16_get_ctrl_io_status

USAGE

Terr DIG16_get_ctrl_io_status(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the status of the 4 general purpose control I/O bits; I/O A to I/O D inclusive. The
function DIG16_set_ctrl_io is used to configure the bits as input or outputs. If an individual bit is set as an
output, DIG16_get_ctrl_io_status will return the value of that output bit.

Each bit can be masked off using DIG16_STAT_IO_A_IN to DIG16_STAT_IO_D_IN inclusive.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

bStatus = ASL_get_ret(DIG16_get_ctrl_io_status(Hdig16));
if ((bStatus & DIG16_STAT_IO_A_IN) != 0)
 printf(“Status bit I/O A is High”);
else
 printf(“Status bit I/O A is Low”);

BUGS / NOTES

The <control io status> is returned in the lower 8 bits, if successful.

There are no known bugs.

SEE ALSO

DIG16_set_ctrl_io.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_data_width 18

DIG16_get_data_width

USAGE

Terr DIG16_get_data_width(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required width parameter.

DESCRIPTION

This function returns the number of valid bits in the requested device.

MODE

DIG16_CAMERA_DATA_WIDTH This function returns the number of valid bits from the camera, as set by
DIG16_set_camera_info.

DIG16_IMAGE_DATA_WIDTH This function returns the number of valid bits in the resulting image, as
set by DIG16_set_image_data_width.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

DataWidth = (ASL_get_ret(DIG16_get_data_width(Hdig16,
DIG16_CAMERA_DATA_WIDTH));

 printf(“\Camera data width is %d bits”, (int) DataWidth);

BUGS / NOTES

The <xxx data width> is returned in the lower 16 bits, if successful.

There are no known bugs.

SEE ALSO

DIG16_get_camera_LSB, DIG16_get_camera_MSB.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_FIFO_status 19

DIG16_get_FIFO_status

USAGE

Terr DIG16_get_FIFO_status(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the status of the Snapper-DIG16 FIFO. The actual status flags are
DIG16_STAT_FIFO_EMPTY, DIG16_STAT_FIFO_ALMOST_EMPTY,
DIG16_STAT_FIFO_ALMOST_FULL and DIG16_STAT_FIFO_FULL.

The DIG16_STAT_FIFO_FULL status is an error condition and is latched in the hardware. Once set, it will
not be cleared until the next acquisition is started. The other three bits are not latched and the status values
can change throughout a capture. The actual levels of the almost empty and almost full flags are fixed and
used by the libraries for control purposes. User applications should not rely on them remaining fixed in the
future but they can be used as an indication that the FIFO is filling up rather than having reached a finite
level.

With the exception of the latched full flag, the other flags cannot be set together because the FIFO cannot be
simultaneously almost full, almost empty and empty.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

bStatus = ASL_get_ret(DIG16_get_FIFO_status(Hdig16));
if ((bStatus & DIG16_STAT_FIFO_EMPTY) != 0)
 printf(“The FIFO is empty”);
else
 printf(“The FIFO is not empty”);

BUGS / NOTES

The <FIFO status> is returned in the lower 8 bits, if successful.

There are no known bugs.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_ID 20

DIG16_get_ID

USAGE

Terr DIG16_get_ID(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the hardware identifier of the Snapper, so that an application can check whether it is
running on a Snapper-DIG16 or a Snapper-PMC-DIG16.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ID(DIG16_get_rev(Hdig16)) == DIG16_ID)
 printf(“\nRunning on Snapper-DIG16”);
else if (ASL_get_ret(DIG16_get_rev(Hdig16)) == DIG16_PMC_ID)
 printf(“\nRunning on Snapper-PMC-DIG16”);
...

BUGS / NOTES

The <ID> (either DIG16_ID or DIG16_PMC_ID) is returned in the lower 8 bits, if successful.

This function is included for compatibility with existing applications. All new applications should use
DIG16_get_parameter.

There are no known bugs.

SEE ALSO

DIG16_get_parameter, DIG16_get_rev.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_LUT_max_addr 21

DIG16_get_LUT_max_addr

USAGE

ui32 DIG16_get_LUT_max_addr(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the minimum size of array which is needed when DIG16_set_LUTs is called. This is
based on the value of the data width set by DIG16_set_camera_info.

RETURNS

See above. The value ‘0’ is returned if any error occurs.

EXAMPLES

lut_size = DIG16_get_LUT_max_addr(Hdig16);

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_set_LUTs.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_parameter 22

DIG16_get_parameter

USAGE

Terr DIG16_get_parameter(Thandle Hdig16, ui16 parameter)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

parameter The parameter to return.

DESCRIPTION

This function returns various parameters from the internal structure associated with the Snapper-DIG16
handle.

PARAMETER

DIG16_BASEBOARD_HANDLE The handle to the baseboard which the Snapper-DIG16 is fitted
on. Type (Thandle, ui32).

DIG16_COMMS_JUMPER This returns the setting of the RS-232 / RS-422 jumper which
sets the comms format. The return value is either
DIG16_COMMS_RS232 or DIG16_COMMS_RS422, or on an
earlier board where the setting of the jumper cannot be read,
DIG16_COMMS_UNKNOWN. Type (Tparam, ui32).

DIG16_FIFO_BYTES This returns the number of bytes which can be stored in the
on-board FIFO on Snapper-DIG16. Type (ui32).

DIG16_FIFO_WIDTH This returns the data width of the on-board FIFO on
Snapper-DIG16, which is 16 on earlier boards, and 32 on more
recent boards including all Snapper-PMC-DIG16 boards. Type
(ui16).

DIG16_PIXEL_COUNT This returns the number of pixels which get stored per capture
when in data stream mode. Type (ui32).

DIG16_TIMEOUT_BEFORE_CAPTURE This returns the timeout value in milliseconds for the period
from when DIG16_capture_to_image is called to when the first
data is received. Type (ui32).

DIG16_TIMEOUT_DATA_TRANSFER This returns the timeout value in milliseconds for the data
transfer, i.e. following the first data being received. Type
(ui32).

DIG16_TIMEOUT_TRIGGER This returns the time in milliseconds allowed before acquisition
times out due to lack of a trigger input. Type (ui32).

DIG16_TWO_CHANNEL This returns TRUE if the camera has two data channels, or
FALSE if it has one data channel. Type (Tboolean).

DIG16_IS_CAMERA_INTERLACED This returns TRUE if the camera supports interlaced fields
output, or FALSE otherwise. Type (Tboolean).

DIG16_ID_VALUE This returns the ID as read from the hardware, which
distinguishes between all the different Snapper-DIG16 variants.
Type (ui8).

DIG16_REV_VALUE This returns the board revision as read from the hardware,
which distinguishes between the hardware revisions of the
Snapper. Type (ui8).

DIG16_IDREV_VALUE This returns the ID and board revision as read from the
hardware, which distinguishes between the different hardware
revisions of the Snapper variants. Type (ui8).

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_parameter 23

DIG16_FAMILY_VALUE This returns DIG16_FAMILY_ID. Although this parameter
always returns the same value, it is used to provide a
mechanism for distinguishing future Snapper-DIG16 variants,
and for compatibility with the DIG16_get_parameter call.
Type (ui8).

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The parameter value is invalid.

ASLERR_NOT_RECOGNIZED The ID value read back from the Snapper hardware is not recognized.

EXAMPLES

if (ASL_get_parameter(Hdig16, DIG16_ID_VALUE) == DIG16_ID)
 printf(“\nRunning on Snapper-DIG16”);
else if (ASL_get_parameter(Hdig16, DIG16_ID_VALUE) == DIG16_PMC_ID)
 printf(“\nRunning on Snapper-PMC-DIG16”);
...

EXAMPLES

See DIG16_set_timer for an example code fragment.

BUGS / NOTES

The function returns a type Terr (ui32 - an unsigned 32 bit integer). Therefore a cast may be need depending
on the parameter type (given above for each parameter).

There are no known bugs.

SEE ALSO

DIG16_set_parameter, DIG16_get_property.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_property 24

DIG16_get_property

USAGE

Terr DIG16_get_property(Thandle Hdig16, char *property, char *value)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

property A character string or name of the property to access.

value The property result string. (Must point to a buffer of at least 128 bytes.)

DESCRIPTION

This function returns various property strings associated with Snapper-DIG16.

The property strings are as follows:

“fpgadate” Snapper FPGA Date: This retrieves the date and time string associated with current control
FPGA file in use. It is unlikely that this function will ever be needed, but it can be useful to
detect old versions of Snapper control FPGA information. (i.e. the date string is used as a
revision level). The format of the returned date string is dd-mmm-yy hh:mm.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The property value is invalid.

EXAMPLES

To print the FPGA date:

char string[256];

DIG16_get_property(Hdig16, “fpgadate”, string);
printf(“Snapper-Dig16 FPGA date: %s”, string);

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_get_parameter.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_rev 25

DIG16_get_rev

USAGE

Terr DIG16_get_rev(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the hardware revision level of the Snapper.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ret(DIG16_get_rev(Hdig16)) == 0)
 printf(“\nRunning on issue 1 Snapper-DIG16”);
else if (ASL_get_ret(DIG16_get_rev(Hdig16)) == 1)
 printf(“\nRunning on issue 2 Snapper-DIG16”);
...

BUGS / NOTES

The <rev> is returned in the lower 8 bits, if successful.

There are no known bugs.

This function is included for compatibility with existing applications. All new applications should use
DIG16_get_parameter.

SEE ALSO

DIG16_get_parameter, DIG16_get_ID.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_ROI 26

DIG16_get_ROI

USAGE

Terr DIG16_get_ROI(Thandle Hdig16, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the current ROI (Region of Interest) and returns it in the roi array.

The top left corner of the image is defined by the ASL_ROI_X_START and ASL_ROI_Y_START coordinates
and the image size defined with the ASL_ROI_X_LENGTH and ASL_ROI_Y_LENGTH values. All the
coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones.

In line scan mode ASL_ROI_Y_START is always 0, and ASL_ROI_Y_LENGTH is the number of lines which
get read per call to DIG16_read_video_data.

RETURNS

This function returns the current ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

To display the current ROI:

DIG16_get_ROI(Hdig16, roi);
printf(“\nROI X start is %d”, (int)roi[ASL_ROI_X_START]);
printf(“\nROI Y start is %d”, (int)roi[ASL_ROI_Y_START]);
printf(“\nROI X length is %d”, (int)roi[ASL_ROI_X_LENGTH]);
printf(“\nROI Y length is %d”, (int)roi[ASL_ROI_Y_LENGTH]);

BUGS / NOTES

There are no known bugs.

This function is not supported in data stream mode.

SEE ALSO

DIG16_set_ROI, DIG16_get_ROI_max, DIG16_set_active_area, DIG16_get_active_area.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_ROI_max 27

DIG16_get_ROI_max

USAGE

Terr DIG16_get_ROI_max(Thandle Hdig16, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

The values in the roi array passed in are ignored.

DESCRIPTION

This function fetches the maximum usable ROI (Region of Interest) for the camera in use and returns it in the
roi array.

The maximum size is defined by the ASL_ROI_X_LENGTH and ASL_ROI_Y_LENGTH values, so the
ASL_ROI_X_START and ASL_ROI_Y_START coordinates are always returned as ‘0’. The coordinates are
based upon raw image sizes in pixels and lines, not sub-sampled ones.

For conventional area scan cameras the values returned are calculated from the information passed to
DIG16_set_active_area.

In line scan mode ASL_ROI_Y_START is always 0, and the coordinate ASL_ROI_Y_LENGTH is the
maximum number of lines which will fit into the FIFO on the Snapper assuming that the full line is captured.
This is calculated from the full width of the line (from the information passed to DIG16_set_active_area) and
the size of the FIFO. This is not a limiting value - if sufficient memory is in the host computer to allow large
DMA transfers then very large numbers of lines can be captured. The value is given to help optimising
applications running under MS-DOS or Windows 3.1. See the Concepts section for more information.

RETURNS

This function returns the maximum ROI in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

To set the maximum allowable ROI:

DIG16_get_ROI_max(Hdig16, roi);
DIG16_set_ROI(Hdig16, DIG16_ROI_SET, roi);

BUGS / NOTES

There are no known bugs.

This function is not supported in data stream mode.

SEE ALSO

DIG16_get_ROI, DIG16_set_ROI, DIG16_set_active_area, DIG16_get_active_area.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_get_subsample 28

DIG16_get_subsample

USAGE

Terr DIG16_get_subsample(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function returns the current sub-sample factor, as set by DIG16_set_capture.

RETURNS

This function returns the sub-sample ratio, i.e. DIG16_SUB_X1, DIG16_SUB_X2, DIG16_SUB_X4 or
DIG16_SUB_X8. Possible error codes:

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

if (ASL_get_ret(DIG16_get_subsample(Hdig16)) == DIG16_SUB_X2)
 printf(“\Currently using times 2 sub-sample”);
else if (ASL_get_ret(DIG16_get_subsample(Hdig16)) == DIG16_SUB_X4)
 printf(“\Currently using times 4 sub-sample”);
...

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_set_capture.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_initialize 29

DIG16_initialize

USAGE

Terr DIG16_initialize(Thandle Hdig16, ui16 mode, ui16 required_bits)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required initialization mode.

required_bits Required data width of final Himage.

DESCRIPTION

This function is used to initialize the Snapper-DIG16 module to the required settings for the camera in use.

It makes calls to DIG16_set_alignment, DIG16_set_callback, DIG16_set_capture, DIG16_set_clk,
DIG16_set_ctrl_io, DIG16_set_format, DIG16_set_image_data_width, DIG16_set_interrupts,
DIG16_set_LUTs, DIG16_set_ROI, and DIG16_set_trigger. It also calls camera specific functions such as
DIG16_set_mplus_ctrll. See the supplied source of DIG16_initialize in “dig16ini.c” to see which modes are
set for each camera.

The parameter required_bits indicates how many bits are needed in the final image. It controls the call to
DIG16_set_format, the scaling parameter in the call to DIG16_set_LUTs, and the call to
DIG16_set_image_data_width. If required_bits is greater than eight DIG16_set_format is set to Y16 mode
generating a TMG_Y16 image. If required_bits is eight or less DIG16_set_format is set to Y8 mode
generating a TMG_Y8 image. If required_bits is less than the camera’s data width the DIG16_set_LUTs
parameter scaling is set to the required non-zero value. If required_bits is greater than the camera’s data
width an error is returned. To get the full data width of the camera, without needing to know what this is,
pass the value DIG16_INIT_FULL_DATA_WIDTH.

MODE

The mode flag identifies the camera in use:

DIG16_AIA_DATA_STREAM This is a generic set up for AIA pinout cameras which are MSB
aligned with up to 16 data bits. The Snapper-DIG16 is put into data
stream mode, so there is no concept of region of interest. The
application needs to call DIG16_set_data_stream_ctrl and
DIG16_set_parameter passing DIG16_PIXEL_COUNT depending on
the camera connected.

DIG16_BASLER_L120_1CH
DIG16_BASLER_L120_2CH

For Basler L120 line scan cameras, with either 1 or 2 channel outputs.
These cameras are available with a variety of CCD widths, so
DIG16_initialize sets a small width as default which can be overridden
by calling DIG16_set_active_area. See the example line scan
application at the front of the manual.

DIG16_CUSTOM_CAMERA This should be used when using an area scan camera which is not
listed below. The function still initializes the Snapper-DIG16, but
does not call the functions listed above. Instead the application must
call all these functions with the appropriate setting for the camera in
use. See the Snapper Technical Note 5 in the Notes section at the end
of the manual for more information. The parameter required_bits is
ignored.

DIG16_CUSTOM_LINESCAN This should be used when using a line scan camera which is not listed
below. The function still initializes the Snapper-DIG16, but does not
call the functions listed above. Instead the application must call all

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_initialize 30

these functions with the appropriate setting for the camera in use. See
the Snapper Technical Note 5 in the Notes section at the end of the
manual for more information. The parameter required_bits is ignored.

DIG16_DALSA_CAD1 For Dalsa CA-D1 family area scan cameras. These cameras are
available with a variety of CCD widths, so DIG16_initialize sets a
small width as default which can be overridden by calling
DIG16_set_active_area. See the example line scan application at the
front of the manual.

DIG16_DALSA_CLCX_1CH
DIG16_DALSA_CLCX_2CH

For Dalsa CLCx family line scan cameras with either 1 or 2 channel
outputs (OS1 and OS2). These cameras are available with a variety of
CCD widths, so DIG16_initialize sets a small width as default which
can be overridden by calling DIG16_set_active_area. See the
example line scan application at the front of the manual.

DIG16_DVC_08
DIG16_DVC_10

For the DVC DigitEyes 8 or 10 bit interlaced area scan cameras.

DIG16_HAMAMATSU_C4742 For the Hamamatsu Photonics C4742.

DIG16_KODAK_MPLUS14 For the Kodak Megaplus 1.4.

DIG16_KODAK_MPLUS14I For the Kodak Megaplus 1.4i.

DIG16_KODAK_MPLUS16 For the Kodak Megaplus 1.6 or 1.6i.

DIG16_KODAK_MPLUS42 For the Kodak Megaplus 4.2.

DIG16_PULNIX_TM1000 For the Pulnix TM1000.

DIG16_PULNIX_TM1001 For the Pulnix TM1001.

DIG16_PULNIX_TM9700 For the Pulnix TM9700.

DIG16_PULNIX_TM9701 For the Pulnix TM9701.

DIG16_XILLIX_1400_10BIT
DIG16_XILLIX_1400_12BIT

For the Xillix MicroImager 1400, in normal clocking mode, with
either 10 or 12 bit output.

DIG16_XILLIX_1400_10BIT_BIN2
DIG16_XILLIX_1400_12BIT_BIN2

For the Xillix MicroImager 1400, in 2x2 binning mode. In this mode
the MicroImager 1400 merges an area of 2x2 photosites into a single
output value. The image resolution is therefore reduced by 2 in both
the X and Y directions, which results in a reduced image resolution but
an increased signal to noise performance, and hence greater dynamic
range.

DIG16_XILLIX_1400_PMI For the Xillix MicroImager 1400 PMI.

Note that all line scan cameras, including the mode DIG16_CUSTOM_LINESCAN, put the Snapper-DIG16
into “line scan mode”. See the Concepts section of this manual for more details. Similarly all data stream
cameras put the Snapper-DIG16 into “data stream mode”.

See the release notes for details of additional cameras supported.

When cameras requiring serial communications are initialised, the serial port is configured in the correct
mode (ie RS-422 or RS-232), but no communications take place. It is up to the user’s application to
implement the appropriate interface protocol using the BASE_serial_xxx family of functions.

RETURNS

This function will either return one of the following, or an error value from one of the lower level function
calls listed above.

ASL_OK If successful.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_initialize 31

ASLERR_OUT_OF_RANGE The required_bits parameter is larger than the camera width.

ASLERR_OUT_OF_MEMORY There was insufficient memory to setup the array to pass to
DIG16_set_LUTs.

ASLERR_BAD_PARAM The mode parameter is invalid.

EXAMPLES

To initialize a Kodak Megaplus 1.4, with its full 8 data bits resolution:

DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS14, DIG16_INIT_FULL_DATA_WIDTH);

To initialize a Kodak Megaplus 1.6, with its full 10 data bits resolution:

DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS16, DIG16_INIT_FULL_DATA_WIDTH);

To initialize a Kodak Megaplus 1.6, getting only 8 data bits resolution:

DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS16, 8);

This will return an ASLERR_OUT_OF_RANGE because the Kodak Megaplus 1.6 only has 10 data bits
resolution:

DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS16, 12);

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_get_camera_type.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_initialize_LUTs 32

DIG16_initialize_LUTs

USAGE

Terr DIG16_initialize_LUTs(Thandle Hdig16, ui16 mode, ui16 required_bits)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required initialization mode.

required_bits Required data width of final Himage.

DESCRIPTION

This function is used to initialize the Snapper-DIG16 LUT to the required settings for the camera in use. For
many applications this function need not be called directly, because it is called by DIG16_initialize.

MODE

The mode flag is only used to identify which camera is being configured, so that a meaningful error code can
be generated from DIG16_initialize. If this function is called directly from an application, then this value can
be set to 0.

REQUIRED_BITS

The parameter required_bits indicates how many bits are needed in the final image, and controls the scaling
parameter in the call to DIG16_set_LUTs. It must be in the range of 8 to 16 inclusive.

RETURNS

This function will either return one of the following, or an error value from one of the lower level function
calls listed above.

ASL_OK If successful.

ASLERR_OUT_OF_RANGE The required_bits parameter is not between 8 and 16.

ASLERR_OUT_OF_MEMORY There was insufficient memory to setup the array to pass to
DIG16_set_LUTs.

EXAMPLES

See the “DIG16ini.c” file for examples.

BUGS / NOTES

There are no known bugs.

Because the function does not use the mode parameter, it does not check whether the size of the LUT is
appropriate for specific camera.

SEE ALSO

DIG16_initialize.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_is_field1_captured 33

DIG16_is_field1_captured

USAGE

Tboolean DIG16_is_field 1_captured(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function is used to determine whether field 1 or field 2 of a frame was captured in video memory. This
is only valid if the mode DIG16_NEXT_FIELD is selected in DIG16_set_capture.

RETURNS

This function returns either TRUE (for field 1 captured) or FALSE (for field 2 captured).

BUGS / NOTES

There are no known bugs.

This function is not supported in data stream or line scan modes.

SEE ALSO

DIG16_set_capture.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_is_trigger_started 34

DIG16_is_trigger_started

USAGE

Tboolean DIG16_is_trigger_started(Thandle Hdig16)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

DESCRIPTION

This function is used to test whether an active edge of the external capture trigger has occurred. It returns
TRUE from the first active edge of the external trigger until the capture has completed. At all other times
FALSE is returned. Note that this function is only useful if DIG16_capture_to_image is called with the
START_AND_RETURN parameter.

RETURNS

This function returns either TRUE (for active edge of trigger has occurred) or FALSE (for capture completed,
or active edge of trigger has not occurred).

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_set_trigger.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_read_video_data 35

DIG16_read_video_data

USAGE

Terr DIG16_read_video_data(Thandle Hdig16, Thandle Himage, ui16 TMG_action)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

Himage Handle to image.

TMG_action TMG mode flag.

DESCRIPTION

This function is supported in line scan mode and is used to read individual images containing a block a lines
from Snapper-DIG16 into the image structure referenced by Himage. It is also supported with MS-DOS and
Windows 3.1 to allow data stream mode to be supported on operating systems without thread support.

The function is called in three stages by using the TMG_action flags TMG_INIT, TMG_STRIP (or
TMG_ASYNC) and TMG_RESET. The Himage must have been set up with a call to DIG16_set_image before
calling the function with mode TMG_INIT.

TMG_ACTION

TMG_INIT This parameter is used to initialize the read video data routine before starting a line scan
mode capture.

TMG_STRIP This parameter is used to read one image during a line scan mode capture. It would
normally be called multiple times while the line scan capture is running. When called
with this parameter, the DIG16_read_video_data call will not return until all the required
data has been read.

TMG_ASYNC This parameter is an asynchronous version of TMG_STRIP; that is, having initiated the
data transfer the function returns before all the data has been read. The function
DIG16_get_capture_status must be called to determine that the transfer has completed.

TMG_RESET This parameter is used to reset the read video data routine after the completion a line scan
mode capture.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_INCOMPATIBLE The mode TMG_STRIP was used without previously using TMG_INIT.

ASLERR_OUT_OF_MEMORY There is insufficient memory available to process the video data. If this
occurs, either there is a memory leak within the application, or the strip size
is too large (consult the TMG Programmer’s Manual for further details).

EXAMPLES

For line scan see the line scan mode example in the Sample Applications section at the front of this manual.

For data stream mode under Windows 3.1 or MS-DOS, the following loop replaces the equivalent one in the
data stream example at the front of the manual:

/* Now continuously capture data */

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_read_video_data 36

while (finished == FALSE)
{
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_START_AND_RETURN);
 DIG16_read_video_data(Hdig16, Hvid_image, TMG_INIT);

 /* Send any commands here needed to make camera send 10000 pixels of data
*/

 DIG16_read_video_data(Hdig16, Hvid_image, TMG_STRIP);
 /*
 * Note: The use of TMG_STRIP above is equivalent to:
 * DIG16_read_video_data(Hdig16, Hvid_image, TMG_ASYNC);
 * DIG16_get_capture_status(Hdig16, DIG16_START_AND_WAIT);
 */
 DIG16_read_video_data(Hdig16, Hvid_image, TMG_RESET);

 /* Process image here */

 /* Update ‘finished’ boolean here */
}

BUGS / NOTES

TMG_INIT and TMG_STRIP are only necessary under MS-DOS, Windows 3.1 and MacOS. Other operating
systems need not use them. Similarly TMG_ASYNC is not supported under MS-DOS, Windows 3.1 and
MacOS.

This function is not supported for area scan cameras, where DIG16_capture_to_image captures and reads.

SEE ALSO

DIG16_capture_to_image.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_active_area 37

DIG16_set_active_area

USAGE

Terr DIG16_set_active_area(Thandle Hdig16, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

DESCRIPTION

This function defines the active area for the camera in use. This is used to allow DIG16_set_ROI to
automatically adjust invalid ROIs (Regions of Interest) so that they do not exceed the camera’s active area.
For many applications this function need not be called directly, because DIG16_initialize calls it to set the
active area of the selected camera.

For conventional area scan cameras the pixel referenced by ASL_ROI_X_START and ASL_ROI_Y_START is
subsequently used by the ROI functions as pixel [0,0].

In line scan mode ASL_ROI_Y_LENGTH should be set to 1 to indicate one line, and ASL_ROI_Y_START is
not used, and should be set to 0. The pixel referenced by ASL_ROI_X_START is subsequently used by the
ROI functions as pixel 0.

All the coordinates are based upon raw image sizes in pixels and lines, not sub-sampled ones. The horizontal
and vertical resolutions are 1 pixel and 1 line respectively.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_OUT_OF_RANGE The active area is too large for Snapper-DIG16, or includes negative
coordinates.

EXAMPLES

For a camera with an active CCD area of 1024 by 512 pixels, which starts outputting data on pixel 20 of line
10:

roi[ASL_ROI_X_START] = 20;
roi[ASL_ROI_Y_START] = 10;
roi[ASL_ROI_X_LENGTH] = 1024;
roi[ASL_ROI_Y_LENGTH] = 512;
DIG16_set_active_area(Hdig16, roi);

For a camera which starts outputting data on pixel 33 of line 2, and continues outputting until pixel 1042 of
line 788:

roi[ASL_ROI_X_START] = 33;
roi[ASL_ROI_Y_START] = 2;
roi[ASL_ROI_X_LENGTH] = 1010; /* i.e. 1042 - 33 + 1 */
roi[ASL_ROI_Y_LENGTH] = 787; ; /* i.e. 788 - 2 + 1 */

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_active_area 38

DIG16_set_active_area(Hdig16, roi);

BUGS / NOTES

Currently for area scan cameras roi[ASL_ROI_X_START] must be at least 5 and roi[ASL_ROI_Y_START]
must be at least 1.

This function is not supported in data stream mode.

SEE ALSO

DIG16_get_active_area, DIG16_set_ROI, DIG16_get_ROI_max, DIG16_set_ROI_rounding.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_alignment 39

DIG16_set_alignment

USAGE

Terr DIG16_set_alignment(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required mode.

DESCRIPTION

This function controls how the data processed by the Snapper-DIG16 is aligned before being transferred to
host memory. For many applications this function need not be called directly, because DIG16_initialize calls
it with mode set to DIG16_ALIGN_LSB.

If the processed data is between 9 and 15 bits per pixel, each 16 bit processed pixel will contain some unused
bits. Most image processing software will expect these unused bits to be at the high end of the pixel, ie the
processed data is LSB aligned.

However by shifting the data such that the unused bits are at the low end of the processed pixel, a fully
saturated image would appear to have nominally the same brightness irrespective of the depth of the camera
output, ie the processed data is MSB aligned. This mode can be useful when viewing an image from a
number of different cameras on the same display using custom imaging software. (Note that whilst the TMG
libraries expect the processed data to be LSB aligned, they automatically MSB align the data for display).

As there are no unused bits within an 8 or 16 bit processed pixel, the alignment setting is ignored under these
conditions.

MODE

DIG16_ALIGN_LSB The LSB of the processed pixel is aligned to be always on D0.

DIG16_ALIGN_MSB The MSB of the processed pixel is aligned to be always on D15.

DIG16_ALIGN_NONE The data from the camera is passed directly to the output without any alignment
being performed.

The alignment requested is performed by programming a shift operation in the LUT the next time
DIG16_set_LUTs is called. The size of the shift is calculated from the values of msb and lsb set by
DIG16_set_camera_info. The requested alignment can be overridden by the scaling parameter of
DIG16_set_LUTs.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

EXAMPLES

See DIG16_set_LUTs for example code.

BUGS / NOTES

There are no known bugs.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_alignment 40

The modes DIG16_ALIGN_LSB and DIG16_ALIGN_MSB can be set regardless of whether the physical
wiring of the camera to Snapper-DIG16 is MSB or LSB aligned, i.e. an MSB aligned camera can be read into
system memory either MSB or LSB aligned, and with no affect on system performance.

The TMG library functions expect a LSB aligned image, so this is the recommended format. Certain TMG
functions, such as TMG_write_raw_data_file, can be used with any alignment.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_callback 41

DIG16_set_callback

USAGE

Terr DIG16_set_callback(Thandle Hdig16, Tparam mode, void (EXPORT_FN *callback)(Thandle, ui32,
void*), void *parameter)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required callback mode.

callback The callback function to install.

parameter Pointer to optional user defined parameter to pass to the installed callback function. This
would typically be a pointer to a user defined structure.

DESCRIPTION

This function installs a callback function that is called on certain events or interrupts which have been set up
by DIG16_set_interrupts.

TYPE

DIG16_CALLBACK_INIT Callback functions are disabled. callback and parameter should be passed as
NULL. This is the default as set by DIG16_initialize.

DIG16_CALLBACK_SET Function callback together with parameter parameter are installed as the
callback function.

CALLBACK FUNCTION DEFINITION

void function(Thandle Hdig16, ui32 int_source, void *parameter)

Hdig16 Handle to Snapper-DIG16. The library sets this to the Snapper-DIG16 which caused the
interrupt (i.e. there may be more than one Snapper-DIG16 in the system).

int_source The interrupt source which has interrupted. The library sets this using the #define
parameters as defined in DIG16_set_interrupts. These parameters are tested using bitwise
operators.

parameter The library sets this to the user defined parameter parameter, as set by
DIG16_set_callback.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

EXAMPLES

This example shows how to enable interrupts and set up a callback to save a file on completion of image acquisition
(see also the example under DIG16_set_interrupts):

/* Callback prototype */
void EXPORT_FN MyCallback(Thandle, ui32, void*);

/* The interrupt handler - which saves a file in this example */

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_callback 42

void EXPORT_FN MyCallback(Thandle hSnapper, ui32 dwIntSrc, void *pMyData)
{
 /* Test on the correct interrupt */
 if (!(dwIntSrc & DIG16_INT_MAIN_TRANSFER_COMPLETE))
 return; /* Unexpected interrupt - we could set an error flag here */

 /* Complete the acquisition and get the capture status */
 if (DIG16_get_capture_status(hSnapper, DIG16_START_AND_WAIT) != ASL_OK)
 {

 /* This code assumes that the TMG image format of hImage is suitable
 * for saving as a TIFF file. Also note that, for this example, hImage
 * is a global.

 */
 TMG_image_set_outfilename(hImage, (char*) pMyData);
 TMG_image_write(hImage, NULL, TMG_TIFF, TMG_RUN);
 }
}

/* The following initialisation code would go into the main program thread */

/* We pass the name of the file in the optional parameter */
static char *pMyData = "test.tif";

/* Enable the callback function */
DIG16_set_callback(hSnapper, DIG16_CALLBACK_SET, MyCallback, NULL);

/* Enable transfer complete interrupt, so that the acquired image will
 * automatically get saved as a TIFF file.

 */
DIG16_set_interrupts(hSnapper, DIG16_INT_MAIN_TRANSFER_COMPLETE, TRUE);

BUGS / NOTES

There are no known bugs.

This function is not supported under MS-DOS , Windows 3.1, Windows 95 or Windows 98 operating
systems.

SEE ALSO

DIG16_set_interrupts.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_camera_info 43

DIG16_set_camera_info

USAGE

Terr DIG16_set_camera_info(Thandle Hdig16, Tparam mode, ui8 lsb, ui8 msb)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required camera settings.

lsb Bit position of the LSB from camera.

msb Bit position of the MSB from camera.

DESCRIPTION

This function informs Snapper-DIG16 of general information about the camera or video source in use. For
many applications this function need not be called directly, because DIG16_initialize calls it with the
appropriate parameters for the camera in use (see the supplied source to “dig16ini.c”).

MODE

DIG16_CAMERA_CONTINUOUS_CLK The camera outputs a clock for more than the period when
data is being transferred. This mode should be set if there are
four or more clocks from the camera following the last line of
data in an image. If it is not clear from the camera’s data
sheet whether to set this parameter or
DIG16_CAMERA_DATA_CLK, set this parameter. Change
to DIG16_CAMERA_DATA_CLK if a data timeout occurs on
attempting to read the full ROI.

DIG16_CAMERA_DATA_CLK The camera only outputs a clock while data is being
transferred. This mode should be set if there are less than
four clocks from the camera following the last line of data in
an image.

DIG16_CAMERA_INTERLACED An interlaced video source is connected.

DIG16_CAMERA_NONINTERLACED A non-interlaced or line scan video source is connected.

DIG16_CAMERA_TWO_CHANNEL The video source connected has two data channels, i.e. it
outputs two consecutive pixels in parallel. In this mode both
channels must be 8 bit, with one channel on MSB ... MSB-7
and the other on MSB-8 ... MSB-15. Therefore the only
acceptable values for MSB and LSB are 0 and 7, or 7 and 0.
Channel order: Pixel tn should be connected to MSB-8 ...
MSB-15 and pixel tn+1 to MSB ... MSB-7.

MSB

This parameter is used by the hardware to know which bit is the MSB. For standard MSB aligned AIA
cameras a setting of 0 should be used indicating that the MSB from the camera connects to the MSB pin on
Snapper-DIG16.

LSB

This parameter is used by the hardware to know which bit is the LSB. As an example, for standard MSB
aligned AIA cameras if the LSB is set to 11 then pins MSB..MSB-11 contain camera data, with MSB-11 the
LSB; and pins MSB-12 to MSB-15 can be ignored.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_camera_info 44

Cameras such as the Kodak Megaplus 1.4 connected via cable CBL-68-37D-A-2M, results in LSB justified
data needing to set lsb to a lower value than msb.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other. See the
examples given below. No change is made to the setting of the board.

ASLERR_OUT_OF_RANGE lsb or msb is more than 15, or the larger of msb and lsb is not between 7
and 15, or the camera data width (i.e. the difference between msb and
lsb + 1) is not between 2 and 16.

ASLERR_NOT_IMPLEMENTED DIG16_CAMERA_TWO_CHANNEL has been selected with either msb or
lsb not 0 or 7.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

The camera in use is non-interlaced, with it’s MSB on pin MSB, and it’s LSB on pin MSB-09 (i.e. it is MSB
aligned and has 10 data bits), and does not stop the clock as soon as data transfer is complete:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED |
DIG16_CAMERA_CONTINUOUS_CLK, 9, 0);

The camera in use is interlaced, with it’s MSB on pin MSB-13, and it’s LSB on pin MSB-00 (i.e. it is LSB
aligned and has 14 data bits), and does not stop the clock as soon as data transfer is complete:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_INTERLACED |
DIG16_CAMERA_CONTINUOUS_CLK, 0, 13);

The camera in use is non-interlaced, with it’s MSB on pin MSB-11, and it’s LSB on pin MSB-02 (i.e. it is
LSB aligned, but with a 2 bit offset, and has 10 data bits), and stops the clock as soon as data transfer is
complete:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_DATA_CLK |
DIG16_CAMERA_NONINTERLACED, 2, 11);

The camera in use is two channel, non-interlaced, with one channel’s MSB on pin MSB and LSB on pin
MSB-07 (i.e. it is MSB aligned), and the second channel’s MSB on pin MSB-08 and LSB on pin MSB-15,
and does not stop the clock as soon as data transfer is complete:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED |
DIG16_CAMERA_TWO_CHANNEL | DIG16_CAMERA_CONTINUOUS_CLK, 7, 0);

The following will result in a error ASL_PARAM_CONFLICT because it is not possible for a camera to be
both interlaced and non-interlaced:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_INTERLACED |
DIG16_CAMERA_NONINTERLACED, 0, 7);

BUGS / NOTES

There are no known bugs.

The function calculates the data width of the camera from the difference between the setting of msb and lsb.
For MSB aligned cameras MSB must be 0.

SEE ALSO

DIG16_get_camera_LSB, DIG16_get_camera_MSB, DIG16_get_data_width, DIG16_get_parameter.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_capture 45

DIG16_set_capture

USAGE

Terr DIG16_set_capture(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required capture mode.

DESCRIPTION

This function configures Snapper-DIG16 for different types of image capture. For many applications this
function need not be called directly, because DIG16_initialize calls it with the parameter
DIG16_CAPTURE_INIT, along with the appropriate field/frame capture mode for the camera in use.

INITIALIZE

DIG16_CAPTURE_INIT This selects next frame, x1 subsample, and disables trigger.

SUB-SAMPLE CONTROL (AREA SCAN MODE)

There are 5 different sub-sample ratios, which also control whether a field or frame is captured:

DIG16_SUB_X1 This enables full resolution image capture of a complete frame.

DIG16_SUB_X1_SINGLE_FIELD This enables full resolution image capture of a single field. Note that
because the resulting image only contains one field it will have the
wrong aspect ratio - it will be half height. This mode can only be
used for an interlaced source.

DIG16_SUB_X2 This enables sub-sampled by 2 image capture. For non-interlaced
sources this is achieved by capturing every other pixel in the
horizontal direction and every other line in the vertical direction.
Similarly, for interlaced sources every other pixel in the horizontal
direction and only one field in the vertical direction is captured.

DIG16_SUB_X4 This enables sub-sampled by 4 image capture. For non-interlaced
sources this is achieved by capturing every fourth pixel in the
horizontal direction and every fourth line in the vertical direction.
Similarly, for interlaced sources every fourth pixel in the horizontal
direction and every other line of one field in the vertical direction is
captured.

DIG16_SUB_X8 This enables sub-sampled by 8 image capture. For non-interlaced
sources this is achieved by capturing every eighth pixel in the
horizontal direction and every eighth line in the vertical direction.
Similarly, for interlaced sources every eighth pixel in the horizontal
direction and every fourth line of one field in the vertical direction is
captured.

Note: If the subsample ratio is changed this function calls DIG16_set_ROI with the current ROI. This
allows the ROI to be checked and if necessary adjusted so that it complies with the settings given by
DIG16_set_ROI_rounding. Therefore if an application keeps its own copy of the current ROI is should call
DIG16_get_ROI to update its copy after calling DIG16_get_ROI.

SUB-SAMPLE CONTROL (LINE SCAN MODE)

There are 4 different sub-sample ratios which control sub-sampling of data across the line:

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_capture 46

DIG16_SUB_X1 This enables full resolution image capture of a complete line.

DIG16_SUB_X2 This enables sub-sampled by 2 image capture. This is achieved by capturing every other
pixel in the line.

DIG16_SUB_X4 This enables sub-sampled by 4 image capture. This is achieved by capturing every fourth
pixel in the line.

DIG16_SUB_X8 This enables sub-sampled by 8 image capture. This is achieved by capturing every eighth
pixel in the line.

Note that the function DIG16_set_linescan_ctrl controls the line acceptance ratio independently from the
sub-sample ratio.

Note: If the subsample ratio is changed this function calls DIG16_set_ROI with the current ROI. This
allows the ROI to be checked and if necessary adjusted so that it complies with the settings given by
DIG16_set_ROI_rounding. Therefore if an application keeps its own copy of the current ROI is should call
DIG16_get_ROI to update its copy after calling DIG16_set_capture.

SUB-SAMPLE CONTROL (DATA STREAM MODE)

There are 4 different sub-sample ratios which control sub-sampling of the raw data stream:

DIG16_SUB_X1 This enables full resolution image capture.

DIG16_SUB_X2 This enables sub-sampled by 2 image capture. This is achieved by capturing every other
pixel in the data stream.

DIG16_SUB_X4 This enables sub-sampled by 4 image capture. This is achieved by capturing every fourth
pixel in the data stream.

DIG16_SUB_X8 This enables sub-sampled by 8 image capture. This is achieved by capturing every eighth
pixel in the data stream.

INITIAL FIELD CONTROL

There are 3 different field control modes for use with interlaced area scan cameras:

DIG16_START_1ST_FIELD Capture starts with a field 1. If a frame is being captured Snapper-DIG16
will wait for a field 1, and then capture this field 1 and the following field
2. If a field is being captured Snapper-DIG16 will wait for a field 1, and
then only capture this field 1.

DIG16_START_2ND_FIELD Capture starts with a field 2. If a frame is being captured Snapper-DIG16
will wait for a field 2, and then capture this field 2 and the following field
1. If a field is being captured Snapper-DIG16 will wait for a field 2, and
then only capture this field 2.

DIG16_START_NEXT_FIELD Capture starts with the next field, either field 1 or field 2. If a frame is
being captured Snapper-DIG16 will capture the next field and the
following field - this may be field 1 and field 2 of the same frame, or field
2 of one frame and field 1 of the following frame. In either case the frame
will be correctly deinterlaced. If a field is being captured Snapper-DIG16
will only capture the next field - either field 1 or field 2.

SEQUENCE CONTROL

There are 2 different operating modes:

DIG16_SINGLE_CAPTURE_MODE After completing an acquisition of the required amount, ie a single
frame in area scan or n pixels in data stream modes, the hardware
resets and does not attempt to acquire any more data.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_capture 47

DIG16_SEQUENCE_MODE In this mode, the hardware will continue to acquire valid data until
DIG16_capture_to_image is called with DIG16_CAPTURE_END.
A single DIG16_capture_to_image is used to start the acquisition
and then all subsequent data is read with calls to
DIG16_read_video_data. Because there is no software intervention
to re-arm the hardware between each field, the acquisition rate can
be faster but there is the possibility that if the software processing
takes too long then the FIFO may overflow.
This mode is not yet supported in data stream.

TRIGGER CONTROL

Capture can be delayed until an external capture trigger event happens:

DIG16_TRIG_IN_ENABLE Image capture requested by DIG16_capture will not start until an active edge
of the selected trigger occurs. See DIG16_set_trigger for information on
control of the trigger source. Note that if the trigger rate is slow, the timeout
before capture may need to be increased to prevent DIG16_capture_to_image
timing out before the trigger is received. This timeout is set by
DIG16_set_parameter.

DIG16_TRIG_IN_DISABLE Image capture requested by DIG16_capture_to_image will occur
independent of the trigger status.

Note that if the trigger is infrequent then the capture timeout parameter
DIG16_TIMEOUT_BEFORE_CAPTURE will need to be extended - see DIG16_set_parameter.

PARAMETER INTERACTION

When combinations of parameters are passed in one call to DIG16_set_capture the routine will interpret the
combinations in a ‘sensible’ way whenever possible, or return an error if the combinations are invalid. See
the examples given below.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other. See the
examples given below. No change is made to the setting of the capture
circuits.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_INCOMPATIBLE A field capture mode is requested for a non-interlaced camera.

EXAMPLES

The following code will capture the next first field using 2 times sub-sampling:

DIG16_set_capture(Hdig16, DIG16_START_1ST_FIELD | DIG16_SUB_X2);
DIG16_capture_to_image(Hdig16, Himage, DIG16_START_AND_WAIT);

In the following call a subsample factor of 8 and capturing the next first field will override the default settings
of DIG16_CLK_INIT:

DIG16_set_capture(Hdig16, DIG16_START_1ST_FIELD | DIG16_CAPTURE_INIT |
DIG16_SUB_X8);

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_capture 48

The following call will result in a DIG16_PARAM_CONFLICT error because Snapper-DIG16 cannot capture
at both x2 and x4 sub-sampling at the same time:

DIG16_set_capture(Hdig16, DIG16_SUB_X4 | DIG16_SUB_X2);

BUGS / NOTES

There are no known bugs.

The function DIG16_set_camera_info informs the software whether the video source is interlaced or
non-interlaced.

SEE ALSO

DIG16_capture_to_image, DIG16_set_trigger.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_clk 49

DIG16_set_clk

USAGE

Terr DIG16_set_clk(Thandle Hdig16, Tparam mode, ui16 *frequency)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required clock mode.

frequency Required frequency in kilohertz of internal clock generator.

DESCRIPTION

This function controls Snapper-DIG16’s external clock line (PCLK). The mode parameter is formed by
‘OR’ing the required options from the list defined below. For many applications this function need not be
called directly, because DIG16_initialize calls it with the appropriate parameter for the camera in use.

MODE

DIG16_CLK_IN_POS This selects the rising edge of the external PCLK signal as
Snapper-DIG16’s pixel clock.

DIG16_CLK_IN_NEG This selects the falling edge of the external PCLK signal as
Snapper-DIG16’s pixel clock.

DIG16_CLK_OUT_POS This selects the internal clock generator as Snapper-DIG16’s pixel
clock, and drives the external PCLK signal (area scan mode) or the
output B signal (line scan mode) with that clock.

DIG16_CLK_OUT_NEG This selects the internal clock generator as Snapper-DIG16’s pixel
clock, and drives the external PCLK signal (area scan mode) or the
output B signal (line scan mode) with that clock inverted.

DIG16_CLK_IO_POS This drives the output B signal with the output from the internal clock
generator, and selects the rising edge of the external PCLK signal as
Snapper-DIG16’s pixel clock. It is needed for cameras which must be
supplied with a clock, but also provide a clock which should be used to
sample camera data. Note that there is no requirement that the input and
output clocks have a known phase relationship - they may be completely
different frequencies.

DIG16_CLK_IO_NEG This drives the output B signal with the output from the internal clock
generator, and selects the falling edge of the external PCLK signal as
Snapper-DIG16’s pixel clock. It is needed for cameras which must be
supplied with a clock, but also provide a clock which should be used to
sample camera data. Note that there is no requirement that the input and
output clocks have a known phase relationship - they may be completely
different frequencies.

DIG16_CLK_OUT_FREQUENCY This sets the frequency of Snapper-DIG16’s internal clock generator to
the nearest achievable value to that requested with the parameter
frequency. With a standard Snapper-DIG16 the following frequencies
are supported by the hardware: 251 kHz, 501 kHz, 1.003 MHz , 2.00
MHz, 2.50 MHz, 3.133 MHz, 4.00 MHz, 5.00 MHz, 6.265 MHz, 8.00
MHz, 10.00 MHz, 12.53 MHz, 16.00 MHz, 20.00 MHz, 25.06 MHz,
33.29MHz, 40MHz and 50.11MHz. The parameter frequency is
updated with the frequency actually set. Note that RS-422 is only
specified up to 10 MHz, so higher frequencies must be used with

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_clk 50

caution, and short cables will probably be needed. The frequencies over
25MHz are provided for those cameras which must be supplied with a
clock but also output a clock (usually half rate) which is used to sample
camera data.

The parameter frequency is only used in mode DIG16_CLK_OUT_FREQUENCY. For all other modes it
should be set to NULL.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

Set the falling edge of incoming pixel clock as the active edge:

DIG16_set_clk(Hdig16, DIG16_CLK_IN_NEG, NULL);

Use the internal clock generator at 12.5 MHz, and drive it out inverted:

ui16 frequency = 12500;

DIG16_set_clk(Hdig16, DIG16_CLK_OUT_NEG | DIG16_CLK_OUT_FREQUENCY,
&frequency);

/* The following will print 12530, which is the nearest achievable frequency
to 12500 requested */

printf(“\nFrequency set is %d”, frequency);

BUGS / NOTES

There are no known bugs.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_comms 51

DIG16_set_comms

USAGE

Terr DIG16_set_comms(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required comms mode.

DESCRIPTION

This function provides control of the serial communication hardware drivers. For many applications this
function need not be called directly, because DIG16_initialize calls it with the appropriate parameter for the
camera in use.

The mode parameter should be one of the following:

MODE

DIG16_COMMS_DEFAULT This should be selected for cameras which do not use serial
communications. In this mode, the serial communications are set to
the same mode as the jumper J4 on the Snapper-DIG16 or J2 on
Snapper-PMC-DIG16. (see the Snapper! Installation Guide for
details).

DIG16_COMMS_RS422 This should be selected for cameras which use the RS-422
communication standard. Note that jumper J4 on the Snapper-DIG16
or jumper J2 on Snapper-PMC-DIG16 must be set for RS-422. (see
the Snapper! Installation Guide for details).

DIG16_COMMS_RS232 This should be selected for cameras which use the RS-232
communication standard. Note that jumper J4 on the Snapper-DIG16
or jumper J2 on Snapper-PMC-DIG16 must be set for RS-232. (see
the Snapper! Installation Guide for details).
The RS-232 output and input signals (as viewed by Snapper-DIG16)
are available on pins 23 and 22 respectively of the front panel
connector.

DIG16_COMMS_RS232_ON_NEG This mode is similar to DIG16_COMMS_RS232, except that the
RS-232 output and input signals (as viewed by Snapper-DIG16) are
available on pins 57 and 56 respectively of the front panel connector.

This parameter is currently only supported in area scan mode.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_INCOMPATIBLE The setting of jumper J2 or J4 (see above) does not match the requested
option. Note that this error can only be generated on recent boards which
support readback of the jumper setting.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_comms 52

EXAMPLES

To use RS-422 interface levels:

DIG16_set_comms(Hdig16, DIG16_COMMS_RS422);

BUGS / NOTES

There are no known bugs.

IMPORTANT: Check the specification of the camera before deciding on the setting of this function.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ctrl_io 53

DIG16_set_ctrl_io

USAGE

Terr DIG16_set_ctrl_io(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required control I/O mode.

DESCRIPTION

This function provides direct control of the general purpose I/O lines. For many applications this function
need not be called directly, because DIG16_initialize calls it with the parameter DIG16_CTRLOUT_INIT,
and camera specific functions such as DIG16_set_mplus_ctrl provide a higher level control of the I/O lines.

The mode parameter should be a combination of the following:

MODE

DIG16_CTRL_INIT This sets the I/O lines to inputs and tri-state disables the outputs. If
enabled, all outputs would be ‘0’.

DIG16_CTRL_IO_A_IN This sets I/O line A as an input.

DIG16_CTRL_IO_A_OUT_0 This drives I/O line A as a low output.

DIG16_CTRL_IO_A_OUT_1 This drives I/O line A as a high output.

DIG16_CTRL_IO_B_IN This sets I/O line B as an input.

DIG16_CTRL_IO_B_OUT_0 This drives I/O line B as a low output.

DIG16_CTRL_IO_B_OUT_1 This drives I/O line B as a high output.

DIG16_CTRL_IO_C_IN This sets I/O line C as an input.

DIG16_CTRL_IO_C_OUT_0 This drives I/O line C as a low output.

DIG16_CTRL_IO_C_OUT_1 This drives I/O line C as a high output.

DIG16_CTRL_IO_D_IN This sets I/O line D as an input.

DIG16_CTRL_IO_D_OUT_0 This drives I/O line D as a low output.

DIG16_CTRL_IO_D_OUT_1 This drives I/O line D as a high output.

DIG16_CTRL_OUT_A_0 This sets output line A low. The line is tri-state controllable using
DIG16_CTRL_OUT_EN and DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_A_1 This sets output line A high. The line is tri-state controllable using
DIG16_CTRL_OUT_EN and DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_A_EXP_POS This drives output line A with the exposure signal from the baseboard’s
timer, with an active high pulse when the timer is in monostable mode.
The line is tri-state controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_A_EXP_NEG This drives output line A with the exposure signal from the baseboard’s
timer, with an active low pulse when the timer is in monostable mode.
The line is tri-state controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ctrl_io 54

DIG16_CTRL_OUT_B_0 Area scan only: This sets output line B low. The line is tri-state
controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_B_1 Area scan only: This sets output line B high. The line is tri-state
controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_C_0 Area scan only: This sets output line C low. The line is tri-state
controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_C_1 Area scan only: This sets output line C high. The line is tri-state
controllable using DIG16_CTRL_OUT_EN and
DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_D_0 This sets output line D low. The line is tri-state controllable using
DIG16_CTRL_OUT_EN and DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_D_1 This sets output line D high. The line is tri-state controllable using
DIG16_CTRL_OUT_EN and DIG16_CTRL_OUT_DIS.

DIG16_CTRL_OUT_EN This tri-state enables the four control out lines, A to D.

DIG16_CTRL_OUT_DIS Area scan only: This tri-state disables the four control out lines, A to D.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

To set the I/O A high, I/O C an input, and output A high, and pulse I/O B low.

DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_IO_A_1 | DIG16_CTRL_IO_B_1 |
DIG16_OUT_A_1 | DIG16_CTRL_IO_C_IN | DIG16_CTRL_OUT_EN);

DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_IO_B_0);
DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_IO_B_1);

The following will result in a parameter conflict error because I/O A cannot be an input and an output at the
same time:

DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_IO_A_1 | DIG16_CTRL_IO_A_IN);

BUGS / NOTES

There are no known bugs.

Note that all output values are written to hardware simultaneously, regardless of the order of parameters in the
function call.

In line scan mode output lines B and C are dedicated for camera control functions, therefore direct control of
these lines is not possible. Also note that in line scan mode it is not possible to tri-state output A and output
D because the dedicated lines B and C must be driven, and independent control is not available.

IMPORTANT: I/O pins should not be enabled as outputs without checking with the camera cable in use to
ensure that the pin will not clash with an output from the camera.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ctrl_io 55

SEE ALSO

DIG16_set_timer, also camera specific functions - see the end of the manual.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_data_stream_ctrl 56

DIG16_set_data_stream_ctrl

USAGE

Terr DIG16_set_data_stream_ctrl(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required data stream mode

DESCRIPTION

This function controls parameters needed for data stream cameras. For many applications this function need
not be called because DIG16_initialize calls it with the required parameters for the selected camera.

MODE

DIG16_DSTRM_LINE_ACQ_ENABLE Data is only acquired while the line enable signal is asserted.

DIG16_DSTRM_LINE_ACQ_DISABLE Data is only acquired regardless of the line enable signal.

DIG16_DSTRM_FRAME_ACQ_ENABLE Data is only acquired while the frame enable signal is
asserted.

DIG16_DSTRM_FRAME_ACQ_DISABLE Data is only acquired regardless of the frame enable signal.

DIG16_DSTRM_LINE_START_ENABLE Start of data capture occurs on the edge of the line enable
signal when it becomes asserted.

DIG16_DSTRM_LINE_START_DISABLE Start of data capture occurs regardless of the line enable
signal.

DIG16_DSTRM_FRAME_START_ENABLE Start of data capture occurs on the edge of the frame enable
signal when it becomes asserted.

DIG16_DSTRM_FRAME_START_DISABLE Start of data capture occurs regardless of the frame enable
signal.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

For a camera with line and frame enables, the normal setting would be to use both line and frame enable to
qualify both capture start and data acquisition. In this mode, capture would not start until both frame and line
had been detected low together, and then pixels would be acquired while frame and line were simultaneously
high:

DIG16_set_data_stream_ctrl(Hdig16, DIG16_DSTRM_LINE_ACQ_ENABLE |
DIG16_DSTRM_FRAME_ACQ_ENABLE | DIG16_DSTRM_LINE_START_ENABLE |
DIG16_DSTRM_FRAME_START_ENABLE);

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_data_stream_ctrl 57

Similarly, for a camera with only a line enable, the normal setting would be to use the line enable to qualify
both capture start and data acquisition. The frame controls should be disabled unless the Snapper-DIG16
frame enable signal is tied to a known level:

DIG16_set_data_stream_ctrl(Hdig16, DIG16_DSTRM_LINE_ACQ_ENABLE |
DIG16_DSTRM_FRAME_ACQ_DISABLE | DIG16_DSTRM_LINE_START_ENABLE |
DIG16_DSTRM_FRAME_START_DISABLE);

BUGS / NOTES

There are no known bugs.

This function is not supported in area scan or line scan modes.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_format 58

DIG16_set_format

USAGE

Terr DIG16_set_format(Thandle Hdig16, Tparam snap_format, ui16 TMG_format)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

snap_format Required format of Snapper.

TMG_format Required TMG format of resulting Himage.

DESCRIPTION

This function controls the format in which data is stored in both Snapper-DIG16 video memory and in the
host computer’s memory. DIG16_initialize calls it with the appropriate parameter for the camera in use.

The parameter TMG_format should be a TMG library pixel format (see the TMG Programmer’s Manual).

SNAP_FORMAT

The parameter snap_format should be one of the following:

DIG16_FORMAT_Y16 Video data will be read from the Snapper-DIG16 as 16 bit words. This mode can
be used with cameras which have between 9 and 16 bits of valid data, based on the
values of lsb and msb set by DIG16_set_camera_info. This will give images with
the maximum image quality when used in conjunction with TMG_Y16. Cameras
with 8 data bits should always use DIG16_FORMAT_Y8.

DIG16_FORMAT_Y8 Video data will be read from the Snapper-DIG16 as 8 bit words. This mode can be
used with all cameras. For cameras which give between 9 and 16 bits of valid data,
based on the values of lsb and msb set by DIG16_set_camera_info, the upper 8
bits will be transferred (as default). This will result in reduced image quality, but
allows twice the data transfer rate compared to Y16.

If colour output modes such as TMG_RGB16 are required the snap_format should always be set to
DIG16_FORMAT_Y8. This is because none of the TMG colour modes use more than 8 bits per colour, so
there would be no change in quality in selecting DIG16_FORMAT_Y16, and using DIG16_FORMAT_Y8
allows a faster transfer rate.

Many combinations of snap_format and TMG_format are only supported on baseboards with a data mapper,
because it is the data mapper which performs the necessary format conversions. Even with a data mapper
some combinations are not supported, for instance current data mappers do not support colour space
conversion, so TMG_YUV422 cannot be used as an output format. When a combination is not supported this
function returns an error, and a TMG_image_convert call could be made to perform the conversion in
software.

Note that while selecting an output mode such as TMG_RGBX32 to allow direct copying of data to a display
card may allow faster display update, it also quadruples the bandwidth required on the host computer’s bus
relative to using TMG_Y8. With slow computer busses, or with digital cameras with a fast clock, this may
result in a FIFO overflow on Snapper-DIG16. If this happens try using TMG_Y8 format and then doing the
format conversion using TMG_image_convert.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_format 59

ASLERR_PARAM_CONFLICT More than one snap_format parameter has been passed in, which is not
allowed because the parameters are mutually exclusive.

ASLERR_NOT_SUPPORTED The combination of parameters selected is not supported by the baseboard.
Either the baseboard may not have a data mapper, or the format conversion
required is too complex for the data mapper to perform.

EXAMPLES

The following code could be used with a 12 bit camera to transfer all 12 bits of data to an Himage:

DIG16_set_alignment(Hdig16, DIG16_ALIGN_LSB);
DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 11, 0);
...
DIG16_set_format(Hdig16, DIG16_FORMAT_Y16, TMG_Y16);

The following code could be used with the same 12 bit camera to generate an output of the format
TMG_RGB16 which is suitable for rapid display using both MS-DOS and Microsoft Windows. This is done
by firstly the Snapper-DIG16 mapping D11..D4 to D7..D0 using its LUTs, and secondly the data mapper
duplicating this data into its red, green and blue channels, and finally trimming the resulting 24 bit value
down to 16 bits by discarding the lower bits:

DIG16_set_format(Hdig16, DIG16_FORMAT_Y8, TMG_RGB16);

BUGS / NOTES

Because some of the mapping functions are performed by the LUTs on the Snapper-DIG16, if snap_format
has been changed the function DIG16_set_LUTs must be called after calling DIG16_set_format and before
calling DIG16_capture_to_image. If only TMG_format has changed there is no need to call
DIG16_set_LUTs.

SEE ALSO

DIG16_set_LUTs.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_image 60

DIG16_set_image

USAGE

Terr DIG16_set_image(Thandle Hdig16, Thandle Himage)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

Himage Handle to image.

DESCRIPTION

This function is used to initialize the image structure into which the captured image will be stored. It sets the
image size based upon the ROI (Region of Interest), the sub-sample ratio, and the image type based on the
requested format. It also initializes the image to process the video data in one strip as is required for the
Snapper-DIG16 (see the TMG Programmer’s Manual for an explanation of strip processing).

This function must be called after DIG16_initialize has been called, or after the width or height of the ROI,
the sub-sample ratio, or the image format or image data width has changed, but before
DIG16_capture_to_image is called.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_NOT_IMPLEMENTED The Snapper-DIG16 sub-sample ratio is not recognised.

EXAMPLE

/* Change the ROI ... */
DIG16_set_ROI(Hdig16, DIG16_ROI_SET, roi);
/* ... therefore call set image before capturing ... */
DIG16_set_image(Hdig16, Himage);
/* ... finally acquire the image */
DIG16_capture_to_image(Hdig16, Himage, DIG16_START_AND_WAIT);

BUGS / NOTES

There are no known bugs.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_image_data_width 61

DIG16_set_image_data_width

USAGE

Terr DIG16_set_image_data_width(Thandle Hdig16, ui16 width)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

Width Data width of image.

DESCRIPTION

This function is used to inform the library of the data width in bits of the image structure into which the
captured image will be stored. For many applications this function need not be called directly, because
DIG16_initialize calls it with width set to the value of required_bits.

The function may need to be called after DIG16_set_LUTs has been called, depending on how the LUT is set
up. See DIG16_set_LUTs for more information.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_OUT_OF_RANGE The value of width is less than 2 or greater than 16.

EXAMPLE

/* Set new LUT which generates 9 bit data */
DIG16_set_LUTs(Hdig16, DIG16_LUT_SET, 0, Plut);
/* Therefore update data width */
DIG16_set_image_data_width(Hdig16, 9);

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_set_LUTs

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_interrupts 62

DIG16_set_interrupts

USAGE

Terr DIG16_set_interrupts(Thandle Hdig16, Tparam type, Tboolean flag)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

type Required interrupt to control.

flag TRUE / FALSE setting for requested interrupt.

DESCRIPTION

This function controls the generation of events and interrupts from Snapper-DIG16. When an enabled
interrupt occurs the function installed by DIG16_set_callback is called. Multiple interrupts are set by bitwise
ORing the interrupt options in a single call to DIG16_set_interrupts.

TYPE

DIG16_INT_INIT All interrupts are disabled. The flag parameter is ignored.
This is the default set by DIG16_initialize.

DIG16_INT_MAIN_TRANSFER_COMPLETE When enabled, an interrupt is generated when all data
transfer has completed.

DIG16_INT_CAPTURE_COMPLETE When enabled, an interrupt is generated when the Snapper
hardware has finished acquiring data from the camera.
This will be slightly before
DIG16_INT_MAIN_TRANSFER_COMPLETE as image
data will still be in the hardware FIFO and bus interface
etc.

DIG16_INT_START_OF_FRAME When enabled, an interrupt is generated at the start of the
frame.

DIG16_INT_END_OF_LINE When enabled, an interrupt is generated at the end of a
line.

DIG16_INT_ACQ_TRIGGER When enabled, an interrupt is generated when the
acquisition trigger is asserted.

DIG16_INT_FIFO_OVERFLOW When enabled, an interrupt is generated if the FIFO
overflows.

DIG16_INT_INITIAL_DATA When enabled, an interrupt is generated when initial data
first enters Snapper-DIG16. This is likely to be just after
DIG16_INT_START_OF_FRAME.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The type parameter is invalid.

ASLERR_NOT_SUPPORTED A mode other than DIG16_INT_INIT has been selected under an operating
system which does not support interrupts.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_interrupts 63

EXAMPLES

This example shows how to perform interrupt driven acquisition and processing using two buffers in host
memory. The benefit in making the acquisition interrupt driven is that CPU’s processing time is maximised.

The program’s main thread installs the interrupt callback function as described in the example under
DIG16_set_callback and starts acquisition as shown below. Full error checking is not shown for simplicity.

/* Setup Snapper-DIG16 as appropriate */
…
/* Prepare image2 for processing by capturing an image */
DIG16_capture_to_image(D16.m_hSnapper, D16.m_hSrcImage2,

DIG16_START_AND_WAIT);

/* Install the interrupt handler and enabled the appropriate interrupt */
DIG16_set_callback(hSnapper, DIG16_CALLBACK_SET, InterruptHandler, NULL);
DIG16_set_interrupts(hSnapper, DIG16_INT_TRANSFER_COMPLETE, TRUE);

/* Start interrupt driven acquisition */
DIG16_capture_to_image(hSnapper, hImage1, DIG16_START_AND_RETURN);

/* This main program thread now sleeps/waits or returns to the message loop */

The interrupt handler now performs acquisition completion, starts the next acquisition and processes the
current image:

/* This is our interrupt handler */
void InterruptHandler(Thandle hSnapper, ui32 dwIntSrc, void *pMyData)
{
 static ui32 dwBuffer = 1;

 /* Complete the read - if acquisition has failed then switch off interrupts
 * and finish.
 */
 if (DIG16_get_capture_status(hSnapper, DIG16_START_AND_WAIT) != ASL_OK)
 {
 DIG16_set_callback(hSnapper, DIG16_CALLBACK_SET, NULL, NULL);
 return;
 }
 else if (dwBuffer == 1)
 {
 DIG16_capture_to_image(hSnapper, hImage2, DIG16_START_AND_RETURN);
 ProcessImage(hImage1);
 dwBuffer = 2;
 }
 else
 {
 /* Complete the read and start the next one */
 DIG16_get_capture_status(hSnapper, DIG16_START_AND_WAIT);
 DIG16_capture_to_image(hSnapper, hImage1, DIG16_START_AND_RETURN);
 ProcessImage(hImage2);
 dwBuffer = 1;
 }

 /* Test on a global (or whatever) to determine if we have finished */
 if (bFinish == TRUE)
 DIG16_set_callback(hSnapper, DIG16_CALLBACK_SET, NULL, NULL);
}

BUGS / NOTES

The interrupt DIG16_INT_MAIN_TRANSFER_COMPLETE is not generated when 384 bytes or less is
acquired per frame. In this instance use the interrupt DIG16_INT_CAPTURE_COMPLETE instead.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_interrupts 64

If adding or removing interrupts, disable interrupts using DIG16_set_callback (to NULL) first and then
re-enable after having called DIG16_set_interrupts.

This function is not supported under MS-DOS, Windows 3.1, Windows 95 or Windows 98 operating systems.

SEE ALSO

DIG16_set_callback.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_linescan_ctrl 65

DIG16_set_linescan_ctrl

USAGE

Terr DIG16_set_linescan_ctrl(Thandle Hdig16, Tparam mode, ui16 width)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required linescan mode.

width Required width of line start out pulse in pixel clocks.

DESCRIPTION

This function controls parameters needed for line scan cameras. For many applications this function need not
be called because DIG16_initialize calls it with the required parameters for the selected camera. Even if it is
called it is only the line acceptance controls and line trigger controls which should be needed.

The line start controls should only be needed to set up a camera which DIG16_initialize does not support.
Many cameras take a line start in signal and send it back as a line start out. This automatically compensates
for any propagation delays in buffers and cabling. It is necessary to have technical information on the camera
signal connections and timing to set these line start parameters correctly.

The width parameter is only used if the mode DIG16_LSCAN_LSTART_OUT_WIDTH is selected. If this
mode is not selected then set width to zero.

MODE

DIG16_LSCAN_LINES_X1 Line acceptance ratio - all incoming lines are stored.

DIG16_LSCAN_LINES_X2 Line acceptance ratio - every other incoming line is stored.

DIG16_LSCAN_LINES_X4 Line acceptance ratio - 1 in 4 incoming lines are stored.

DIG16_LSCAN_LINES_X8 Line acceptance ratio - 1 in 8 incoming lines are stored.

DIG16_LSCAN_LSTART_IN_POS An active high line start in pulse from the camera is used to start
Snapper-DIG16 acquiring data. The line start in signal should be
connected to the LINE_EN pin.

DIG16_LSCAN_LSTART_IN_NEG An active low line start in pulse from the camera is used to start
Snapper-DIG16 acquiring data. The line start in signal should be
connected to the LINE_EN pin.

DIG16_LSCAN_LSTART_IN_NONE The camera does not generate a line start in pulse, so the internal
line start out pulse is used to start Snapper-DIG16 acquiring data.
Note that this internal pulse is not affected by the setting of
DIG16_LSCAN_LSTART_OUT_POS,
DIG16_LSCAN_LSTART_OUT_NEG, or
DIG16_LSCAN_LSTART_OUT_NONE.

DIG16_LSCAN_LSTART_OUT_POS An active high line start out pulse will be generated to tell the
camera to start sending data. The width of this pulse will be
determined by the most recent call with the parameter
DIG16_LSCAN_LSTART_OUT_WIDTH, and the pulse is
generated is output on the OUT_C pin.

DIG16_LSCAN_LSTART_OUT_NEG An active low line start pulse will be generated to tell the camera
to start sending data. The width of this pulse will be determined
by the most recent call with the parameter
DIG16_LSCAN_LSTART_OUT_WIDTH, and the pulse is

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_linescan_ctrl 66

generated is output on the OUT_C pin.

DIG16_LSCAN_LSTART_OUT_NONE No line start out pulse will be generated.

DIG16_LSCAN_LSTART_OUT_WIDTH The width of the line start out pulse is set by the width parameter.
This value is in pixel clocks.

DIG16_LSCAN_LTRIG_IN_TIMER The line trigger, which is used to capture each line, is obtained
from the baseboard timer. Each rising edge from the baseboard
timer results in one line being captured. This mode would
normally be used in conjunction with the astable mode of the
timer, as controlled by BASE_set_timer. This allows lines to be
captured on a regular interval.

DIG16_LSCAN_LTRIG_IN_POS The line trigger, which is used to capture each line, is obtained
from the line trigger input. Each rising edge of the line trigger
input results in one line being captured.

DIG16_LSCAN_LTRIG_IN_NEG The line trigger, which is used to capture each line, is obtained
from the line trigger input. Each falling edge of the line trigger
input results in one line being captured.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

To set the line acceptance ratio to every other line:

DIG16_set_linescan_ctrl(Hdig16, DIG16_LSCAN_LINES_X1, 0);

To set up the Snapper-DIG16 for a camera which needs to receive an active high line start pulse 40 clocks
wide, and which returns an active low line start pulse:

DIG16_set_linescan_ctrl(Hdig16, DIG16_LSCAN_LSTART_OUT_WIDTH, 40);
DIG16_set_linescan_ctrl(Hdig16, DIG16_LSCAN_LSTART_OUT_POS |

DIG16_LSCAN_LSTART_IN_NEG, 0);

BUGS / NOTES

There are no known bugs.

This function is not supported in area scan or data stream modes.

The line trigger should be connected to pins FRAME+ and FRAME-. See the Camera Specific Release Notes
in the Installation section of the manual for cable connections and Snapper-DIG16’s pinout.

SEE ALSO

-

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_LUTs 67

DIG16_set_LUTs

USAGE

Terr DIG16_set_LUTs(Thandle Hdig16, Tparam mode, i16 scaling, IM_UI16 *Plut)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required mode.

scaling Scaling factor for LUT.

Plut Pointer to an array of ui16 elements for the required LUT.

DESCRIPTION

This function controls the look up tables (LUTs) which the video data is passed through. For many
applications this function need not be called directly, because DIG16_initialize calls it with scaling set to zero
and mode set to DIG16_LUT_INIT.

MODE

DIG16_LUT_INIT This writes a linear ramp to the selected LUT(s), effectively bypassing it. The contents
of Plut are ignored on entry, but are used to return the values written to the LUT by
DIG16_set_LUTs.

DIG16_LUT_SET This copies the values in Plut to the LUT.

In both cases the LUT is scaled as determined by DIG16_set_alignment and the parameter scaling - see
below.

ALIGNMENT AND SCALING

The LUT is used to automatically scale data from the camera to have the required bit alignment in the
resulting Himage, as determined by the requested alignment from DIG16_set_alignment. DIG16_set_LUTs
does this based on the most recent calls to DIG16_set_camera_info and DIG16_set_format, as well as
DIG16_set_alignment. If the contents of the LUT passed in override this bit alignment it is necessary to call
DIG16_set_image_data_width to ensure than the resulting image is processed and displayed correctly.

If scaling is positive the data from the camera is additionally shifted by scaling places to the left, i.e. an image
will become brighter. Similarly, if scaling is negative the data from the camera is additionally shifted by
scaling places to the right, i.e. an image will become darker. Note that the TMG function
TMG_LUT_generate can be used to generate LUTs giving proper brightness, contrast and gamma control,
(see the examples given below).

LUT ARRAY SIZE

It is safe to always declare the array pointed to by Plut with 65536 elements; or the minimum size of the LUT
can be determined by a call to DIG16_get_LUT_max_addr. DIG16_set_LUTs only writes the number of
elements needed based on DIG16_get_LUT_max_addr - this greatly speeds up LUT programming for small
LUTs. Note that the array is always ui16, even for 8 bit cameras.

RETURNS

When called with DIG16_LUT_INIT the function fills in the values written to the LUT in the array pointed to
by Plut. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_LUTs 68

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_OUT_OF_RANGE The value of scaling would result in the data being shifted so far that no
image would result.

EXAMPLES

The following code will result in the data from a 12 bit camera being passed unchanged through the LUT so
that D11 from the camera ends up on D11 in the Himage:

DIG16_set_alignment(Hdig16, DIG16_ALIGN_LSB);
DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 11, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y16, TMG_Y16);
DIG16_set_LUTs(Hdig16, DIG16_LUT_INIT, 0, lut);

The following code will result in the data from a 12 bit camera being shifted left by 4 places so that D11 from
the camera ends up on D15 in the Himage:

DIG16_set_alignment(Hdig16, DIG16_ALIGN_MSB);
DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 11, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y16, TMG_Y16);
DIG16_set_LUTs(Hdig16, DIG16_LUT_INIT, 0, lut);

The following code will result in the data from the same camera being shifted left by 3 places so that D11
from the camera ends up on D14 in the Himage:

DIG16_set_alignment(Hdig16, DIG16_ALIGN_MSB);
DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 11, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y16, TMG_Y16);
DIG16_set_LUTs(Hdig16, DIG16_LUT_INIT, -1, lut);

The following code will result in the data from a 10 bit camera being shifted right by 2 places so that D9 from
the camera ends up on D7 in the Himage:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 9, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y8, TMG_RGBX32);
DIG16_set_LUTs(Hdig16, DIG16_LUT_INIT, 0, lut);

The following code will result in the data from a 8 bit camera which is connected to D9..D2 being shifted
right by 2 places so that D9 from the camera ends up on D7 in the Himage:

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 2, 9);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y8, TMG_RGBX32);
DIG16_set_LUTs(Hdig16, DIG16_LUT_INIT, 0, lut);

The following code will set the LUT to binary threshold at level 100:

ui16 lut[256];

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 7, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y8, TMG_RGBX32);
for (lut_addr = 0; lut_addr <= 100; lut_addr++)
 lut[lut_addr] = 0;
for (lut_addr = 100; lut_addr <= 256; lut_addr++)
 lut[lut_addr] = 255;
DIG16_set_LUTs(Hdig16, DIG16_LUT_SET, 0, lut);

The following code will generate a LUT with brightness, contrast and gamma correction, etc:

ui8 pLut;

Thandle hLUT;

/* Create a 256 element LUT structure, and generate a LUT with the supplied
 * brightness, contrast and gamma settings.
 */
hLUT = TMG_LUT_create(256, 1);
TMG_LUT_generate(hLUT, wBrightness, wContrast, wGamma, 0, 0, 0);

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_LUTs 69

pLut = (ui8 *) TMG_LUT_get_ptr(hLUT, TMG_GRAY);

DIG16_set_camera_info(Hdig16, DIG16_CAMERA_NONINTERLACED, 7, 0);
DIG16_set_format(Hdig16, DIG16_FORMAT_Y8, TMG_RGBX32);
DIG16_set_LUTs(Hdig16, DIG16_LUT_SET, 0, pLut);

BUGS / NOTES

There are no known bugs.

SEE ALSO

DIG16_set_alignment, DIG16_set_camera_info, DIG16_set_format, DIG16_set_image_data_width,
DIG16_get_LUT_max_addr.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_parameter 70

DIG16_set_parameter

USAGE

Terr DIG16_set_parameter(Thandle Hdig16, ui16 parameter, ui32 value)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

parameter The parameter to set.

value The value to set the parameter to.

DESCRIPTION

This function sets various parameters in the internal structure associated with the Snapper-DIG16 handle.

PARAMETER

DIG16_PIXEL_COUNT This sets the number of pixels which get stored per capture
when in data stream mode. The parameter is only used in data
stream mode. DIG16_set_image must then be called.

DIG16_TIMEOUT_BEFORE_CAPTURE This sets the timeout value in milliseconds for the period from
when DIG16_capture_to_image is called to when the first data
is received. The default value is 2 seconds. Note that in
external trigger mode if the trigger rate is slower than 2 seconds
then this will need to be increased.

DIG16_TIMEOUT_DATA_TRANSFER This sets the timeout value in milliseconds for the data transfer,
i.e. following the first data being received. The default value is
4 seconds. Note that very large image transfers (especially in
data stream mode) will need larger values.

DIG16_TIMEOUT_TRIGGER This sets the timeout value in milliseconds for the period from
when DIG16_capture_to_image is called to when the trigger is
received. The default value is 4 seconds. Note that in external
trigger mode if the trigger rate is slower than 4 seconds then
this will need to be increased.

This timeout is automatically increased as necessary if
DIG16_TIMEOUT_BEFORE_CAPTURE is set to a value
larger than DIG16_TIMEOUT_TRIGGER.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

EXAMPLES

To request 40,000 pixels get stored per capture in data stream mode:

DIG16_set_parameter(Hdig16, DIG16_PIXEL_COUNT, (ui32) 40000L);

To increase the timeout before capture to 15 seconds when switching to external trigger mode:

DIG16_set_capture(Hdig16, DIG16_TRIG_IN_ENABLE);
DIG16_set_parameter(Hdig16, DIG16_TIMEOUT_BEFORE_CAPTURE, (ui32) 15000L);

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_parameter 71

BUGS / NOTES

There are no known bugs.

For the timeout parameters the granularity depends on the operating system in use, but will not be more than 1
second.

SEE ALSO

DIG16_get_parameter.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ROI 72

DIG16_set_ROI

USAGE

Terr DIG16_set_ROI(Thandle Hdig16, Tparam mode, i16 roi[ASL_SIZE_2D_ROI])

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

roi ROI array with four elements, with #defined element names:

ASL_ROI_X_START Horizontal start position of ROI (0 = left of image).

ASL_ROI_Y_START Vertical start position of ROI (0 = top of image).

ASL_ROI_X_LENGTH Horizontal width of ROI.

ASL_ROI_Y_LENGTH Vertical height of ROI.

DESCRIPTION

This function defines the ROI (Region of Interest). For many applications this function need not be called
directly, because DIG16_initialize calls it to set the full ROI of the selected camera.

For conventional area scan cameras the top left corner of the image is defined with the ASL_ROI_X_START
and ASL_ROI_Y_START coordinates and the image size defined with the ASL_ROI_X_LENGTH and
ASL_ROI_Y_LENGTH values. All the coordinates are based upon raw image sizes in pixels and lines, not
sub-sampled ones. This allows the image sub-sampling ratio to be varied for fast update or image resolution,
without varying the ROI as well. The horizontal and vertical resolutions are 1 pixel and 1 line respectively.

For line scan mode the first pixel in the line is defined with the ASL_ROI_X_START value and the line width
defined with the ASL_ROI_X_LENGTH value. These X coordinates are based upon raw image sizes in
pixels, not sub-sampled ones, with a resolution of 1 pixel. The coordinate ASL_ROI_Y_START should be 0,
and ASL_ROI_Y_LENGTH defines the number of lines to read per image (see the Concepts section at the start
of the manual for more information on lines per image). The Y coordinate has a resolution of one line, but
note that this controls how many lines are captured, not how many are incoming, therefore a constant number
of lines are stored even if the line acceptance ratio is changed.

The benefit of using a reduced ROI compared to a full screen image is that the frame readout rate can be
significantly faster because there is less data to read out.

The function checks the ROI before setting it in hardware. If the ROI requested is outside the valid range for
the camera in use (as set by DIG16_set_active_area) the function does not return an error. Instead it trims
the ROI, and returns the actual ROI set. This is done to simplify the use of the function with interactive
software (e.g. window sizing).

Similarly, the ROI is adjusted to satisfy the rounding requirements (as set by DIG16_set_ROI_rounding).

MODE

DIG16_ROI_CHECK The roi passed in is pre-processed (see below), but not actually set. This allows an
application to check what ROI would get used if DIG16_ROI_SET was called,
without having to change the setup of the Snapper.

DIG16_ROI_SET The roi passed in is selected.

RETURNS

This function returns the actual ROI set in the roi array. Possible error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ROI 73

ASLERR_BAD_PARAMETER The mode parameter is invalid.

EXAMPLES

To select an ROI starting in the top left hand corner of the active area which is 1000 pixels wide by 10 lines
deep:

roi[ASL_ROI_X_START] = 0;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 1000;
roi[ASL_ROI_Y_LENGTH] = 10;
DIG16_set_ROI(Hdig16, DIG16_ROI_SET, roi);

The following shows the effect of the parameter pre-processing:

roi[ASL_ROI_X_START] = 15;
roi[ASL_ROI_Y_START] = 1;
roi[ASL_ROI_X_LENGTH] = 800;
roi[ASL_ROI_Y_LENGTH] = 600;
DIG16_set_active_area(Hdig16, roi);

roi[ASL_ROI_X_START] = 0;
roi[ASL_ROI_Y_START] = 0;
roi[ASL_ROI_X_LENGTH] = 1000;
roi[ASL_ROI_Y_LENGTH] = 400;
DIG16_set_ROI(Hdig16, DIG16_ROI_SET, roi);
/* roi[ASL_ROI_X_START] will still contain 0
 * roi[ASL_ROI_Y_START] will still contain 0
 * roi[ASL_ROI_X_LENGTH] will now contain 800, i.e. the value of 1000 has been

clipped
 * roi[ASL_ROI_Y_LENGTH] will still contain 400
 */

BUGS / NOTES

There are no known bugs.

This function is not supported in data stream mode.

SEE ALSO

DIG16_get_ROI, DIG16_get_ROI_max, DIG16_set_active_area, DIG16_set_ROI_rounding,
DIG16_get_active_area.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ROI_rounding 74

DIG16_set_ROI_rounding

USAGE

Terr DIG16_set_ROI_rounding(Thandle Hdig16, ui16 x_round, ui16 y_round)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

x_round Required x direction rounding value

y_round Required y direction rounding value

DESCRIPTION

x_round and y_round allow DIG16_set_ROI to automatically adjust ROIs. For many applications this
function need not be called directly, because DIG16_initialize calls it with values x_round of 2 and y_round
of 1.

If x_round is not one the horizontal width of an image is reduced to be a multiple of the number specified.
For example, if it is required that all Himages have a width which is exactly divisible by 8 then x_round
should be set to 8.

Similarly, if y_round is not zero the number of lines in an image is reduced to be a multiple of the number
specified. For example, if it is required that all Himages have a height which is exactly divisible by 64 then
y_round should be set to 64.

Note that it is the resulting image size allowing for subsampling which is adjusted, and not the x1
subsampling parameters of the ROI.

Both x_round and y_round can have values of 1, 2, 4, 8, 16, 32, 64, 128 or 256.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_OUT_OF_RANGE x_round or y_round is not a supported value as listed above.

EXAMPLES

All ROIs set by subsequent calls to DIG16_set_ROI will be a multiple of 2 pixels wide, and a multiple of 8
lines high:

DIG16_set_ROI_rounding(Hdig16, 2, 8);

In this example the ROI specified does not need adjusting because 84 is divisible by 2:

DIG16_set_capture(Hdig16, DIG16_SUB_X1);
DIG16_set_ROI_rounding(Hdig16, 2, 1);
roi[ASL_ROI_X_LENGTH] = 84;
DIG16_set_roi(Hdig16, DIG16_ROI_SET, roi);

In this example the ROI specified will be adjusted because 21 (the resulting image width at x4 subsampling,
i.e. 84 / 4) is not divisible by 2:

DIG16_set_capture(Hdig16, DIG16_SUB_X4);
DIG16_set_ROI_rounding(Hdig16, 2, 1);
roi[ASL_ROI_X_LENGTH] = 86;
DIG16_set_roi(Hdig16, DIG16_ROI_SET, roi);
/* roi[ASL_ROI_X_LENGTH] now 80 giving an image width of 20 */

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_ROI_rounding 75

BUGS / NOTES

There are no known bugs.

It is recommended that x_round is set to 2 or greater because some image processing libraries, including
many functions in the TMG library, cannot cope with odd width images.

Any changes in the settings of DIG16_set_ROI_rounding will not take affect until DIG16_set_ROI has been
called.

This function is not supported in data stream mode.

SEE ALSO

DIG16_set_ROI, DIG16_get_ROI_max.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_timer 76

DIG16_set_timer

USAGE

Terr DIG16_set_timer(Thandle Hdig16, Tparam mode, ui32 time, Terr (EXPORT_FN *time_fn)(Thandle))

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required timer mode.

time Required time pulse width.

time_fn Required timer control function.

DESCRIPTION - AREA SCAN, DATA STREAM MODES

This function controls the timer on the baseboard to generate pulses, typically for camera exposure control.
For many applications this function need not be called directly, because DIG16_initialize calls it with the
parameter DIG16_TIMER_INIT.

DIG16_set_timer sets up a timer control function which is automatically called by DIG16_capture_to_image
to generate a timed pulse for the camera. A default timer control function provides a single pulse of
programmable width. If a sequence of pulses is required then a custom function can be written, and
DIG16_capture_to_image will automatically call it.

The hardware timer pulse can only be output on the OUT_A pin, so DIG16_set_ctrl_io must be called to set
the OUT_A pin in the required mode. However custom software functions can control other I/O or output
pins and be utilised by calling DIG16_TIMER_SET_TIMER_FN.

The timer hardware is fitted to the baseboard. Some baseboards do not provide this function, resulting in the
first call to DIG16_capture_to_image with the timer enabled failing with error ASLERR_NOT_SUPPORTED
from function BASE_set_timer.

The mode parameter should be one of the following:

MODE

DIG16_TIMER_INIT This selects the default timer function, but disables the timer by setting
the exposure time to zero. The values of time and time_fn are ignored.

DIG16_TIMER_SET_EXPOSURE This controls the exposure time used by the default timer function. The
exposure time is passed in the time parameter in microseconds. The
value of time_fn is ignored.

DIG16_TIMER_SET_TIMER_FN This allows a custom timer function to be called. This might be used if
a sequence of pulses is required for a camera. A pointer to the custom
function is passed in the time_fn parameter. The value of time is
ignored.

DESCRIPTION - LINE SCAN MODE

This function controls a hardware timer on the Snapper-DIG16 to generate pulses, typically for camera
exposure control. A pulse of the requested width is generated once per line captured, following the active
edge of the selected line start signal. The baseboard timer is not used, and is therefore free to generate a line
trigger (see DIG16_set_linescan_ctrl).

The timer pulse can only be output on the OUT_A pin, so DIG16_set_ctrl_io must be called to set the
OUT_A pin in the required mode.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_timer 77

MODE

DIG16_TIMER_SET_EXPOSURE This controls the exposure time used by the default timer function. The
exposure time is passed in the time parameter in microseconds. The
value of time_fn is ignored. The timer has a resolution of about 53us,
with a maximum period of 13.6ms.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

EXAMPLES

To enable a single active low pulse on the trigger pin, of width 10ms, to be automatically generated on each
capture from then on:

DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_OUT_A_EXP_NEG);
DIG16_set_timer(Hdig16, DIG16_TIMER_SET_EXPOSURE, (ui32) 10000, NULL);
...
DIG16_capture_to_image(Hdig16, Himage, DIG16_START_AND_WAIT;

To set up a custom timer function which enables an active high pulse of 1ms, followed by a low pulse of 1s,
followed by a high pulse of 1ms, to be automatically generated on each capture from then on (area scan and
data stream modes only):

main()
{
 ...
 DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_OUT_A_EXP_POS);
 DIG16_set_timer(Hdig16, DIG16_TIMER_SET_TIME_FN, 0, my_timer_function);
 ...
}

Terr EXPORT_FN my_timer_function(Thandle Hdig16)
{
 Thandle Hbase;

 /* First get baseboard handle so BASE functions can be called */
 Hbase = DIG16_get_parameter(Hdig16, DIG16_BASEBOARD_HANDLE);

 /* Generate first pulse */
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);
 /* Hold exposure line low for 1 second */
 DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_OUT_A_0);
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000000L);
 /* Finally generate second pulse */
 DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_OUT_A_EXP_POS);
 BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);
 return(ASL_OK);
}

BUGS / NOTES

There are no known bugs.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_timer 78

If the exposure is very long then the capture timeout parameter DIG16_TIMEOUT_BEFORE_CAPTURE will
need to be extended - see DIG16_set_parameter.

SEE ALSO

BASE_set_timer, DIG16_set_ctrl_io.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_trigger 79

DIG16_set_trigger

USAGE

Terr DIG16_set_trigger(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required trigger mode.

DESCRIPTION

This function sets the capture trigger mode. A pulse on the hardware trigger input results in a single frame
being captured in area scan mode, or allows a group of lines to be captured in line scan mode. For many
applications this function need not be called directly, because DIG16_initialize calls it with the parameter
DIG16_TRIG_INIT. Note that DIG16_TRIG_IN_POS and DIG16_TRIG_IN_NEG do not enable triggering -
to do this use call DIG16_set_capture with DIG16_TRIG_IN_ENABLE.

The mode parameter should be one of the following:

MODE

DIG16_TRIG_INIT The first call to DIG16_set_trigger should include this parameter. It selects
IO_B as the trigger pin is an input with the rising edge active.

DIG16_TRIG_IN_POS This specifies that the selected trigger pin has the rising edge active if it is an
edge trigger, or active high if it is a level trigger.

DIG16_TRIG_IN_NEG This specifies that the selected trigger pin has the falling edge active if it is an
edge trigger, or active low if it is a level trigger.

DIG16_TRIG_IN_LEVEL This specifies that the trigger occurs when the required level occurs on the
selected trigger pin following the start of capture.

DIG16_TRIG_IN_EDGE This specifies that the trigger occurs when the required edge occurs on the
selected trigger pin following the start of capture.

DIG16_TRIG_GATED This specifies that the trigger pin is also used to gate data acquisition on a line
by line basis. Once the trigger condition has occurred, the selected trigger
input pin is sampled at the start of each line, and used to determine whether
the current line of data is acquired. The polarity of the gating is common with
that of the trigger, i.e. if DIG16_TRIG_IN_POS is used, then the system will
trigger on a rising edge or high level, and the acquisition will also be gated
with a high level on the trigger input.
Note that this feature currently only applies to line scan mode.

DIG16_TRIG_NON_GATED This specifies that the trigger pin is only used to start acquisition. Once the
trigger condition has occurred, acquisition continues until the software
terminates capture.
Note that this feature is the default setting in area scan and data stream
modes.

DIG16_TRIG_IN_IO_A This specifies that the IO_A pin is used as the trigger in. DIG16_set_ctrl_io
should be called to set this pin as an input.

DIG16_TRIG_IN_IO_B This specifies that the IO_B pin is used as the trigger in. DIG16_set_ctrl_io
should be called to set this pin as an input.

DIG16_TRIG_IN_IO_C This specifies that the IO_C pin is used as the trigger in. DIG16_set_ctrl_io
should be called to set this pin as an input.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_trigger 80

DIG16_TRIG_IN_IO_D This specifies that the IO_D pin is used as the trigger in. DIG16_set_ctrl_io
should be called to set this pin as an input.

DIG16_TRIG_IN_TTL1 This specifies that the TTL_TRIG1 pin is used as the trigger in. Note that
this pin is only available on recent boards.

DIG16_TRIG_IN_TTL2 This specifies that the TTL_TRIG2 pin is used as the trigger in. Note that
this pin is only available on recent boards.

DIG16_TRIG_IN_FRAME This specifies that the FRAME pin is used as the trigger in. This is currently
only available in area scan mode.

DIG16_TRIG_IN_LINE This specifies that the LINE pin is used as the trigger in. This is currently
only available in area scan mode.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

ASLERR_NOT_SUPPORTED A TTL trigger is selected on a board which does not support it.

EXAMPLES

To select falling edge trigger on pin IO_A, then acquire the image on a trigger input pulse:

DIG16_set_ctrl_io(Hdig16, DIG16_CTRL_IO_A_IN);
DIG16_set_trigger(Hdig16, DIG16_TRIG_IN_IO_A | DIG16_TRIG_IN_NEG);
DIG16_set_capture(Hdig16, DIG16_TRIG_IN_ENABLE);
DIG16_capture_to_image(Hdig16, Himage, DIG16_START_AND_WAIT);

BUGS / NOTES

There are no known bugs.

See the Camera Specific Release Notes in the Installation section of the manual for cable connections and
Snapper-DIG16’s pinout.

SEE ALSO

DIG16_is_trigger_started, DIG16_set_capture.

Snapper-DIG16 Programmer’s Manual v4.0.1 Camera Specific Functions 81

Camera Specific Functions

DIG16_set_C4742_ctrl
DIG16_set_mplus_ctrl
DIG16_set_X1400_ctrl

The functions are described in alphabetical order in the following pages.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_C4742_ctrl 82

DIG16_set_C4742_ctrl

USAGE

Terr DIG16_set_C4742_ctrl(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required control mode.

DESCRIPTION

This function allows control of Hamamatsu Photonics C4742 cameras by making appropriate calls to
DIG16_set_ctrl_io. DIG16_initialize(..., DIG16_HAMAMATSU_C4742) calls it with the parameter
DIG16_C4742_MODE | 4.

Note that the camera mode must be switched to ‘0’ for this function to have any effect, and the shutter switch
on the camera control unit needs to be set to ‘ENB’. Also switch SW1-2 in the camera control unit must be
set to ‘Off’ to get the correct active area. See the camera’s manual for details of how to do this and for full
descriptions of the available camera modes.

The mode parameter should be a combination of the following:

MODE

DIG16_C4742_MODE The required C4742 mode should be ORed with this parameter, e.g.
(DIG16_C4742_MODE | 2) to set mode 2. The mode number should be
one of the modes supported by the camera, i.e. one of 0, 2, 3, 4, 6 or 7.
See the camera’s manual for details of these modes.

DIG16_C4742_PULSE_EXT_IN This pulses the EXT_IN line to the camera which will cause it to start an
exposure when it is in modes 2, 3, 6 or 7.

In mode 7, where the exposure time is controlled by the EXT_IN line, this line driven by the baseboard timer.
DIG16_set_timer must be called to set the required exposure time.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_OUT_OF_RANGE The C4742 mode is not supported by the camera.

EXAMPLES

To set the a C4742 camera in mode 4:

DIG16_set_C4742_ctrl(Hdig16, DIG16_C4742_MODE | 4);

BUGS / NOTES

There are no known bugs.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_C4742_ctrl 83

The function relies on the pin connections in the camera cable matching those of the standard cable part
number CBL-68-37D-A-2M. A cable with different I/O connections could be used, but direct calls to
DIG16_set_ctrl_io would be needed.

SEE ALSO

DIG16_set_ctrl_io.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_mplus_ctrl 84

DIG16_set_mplus_ctrl

USAGE

Terr DIG16_set_mplus_ctrl(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required control mode.

DESCRIPTION

This function allows control of Kodak Megaplus 1.4, 4.2 and similar cameras by making appropriate calls to
DIG16_set_ctrl_io. DIG16_initialize(..., DIG16_KODAK_MPLUSXX) calls it with the parameters
DIG16_MPLUS_CONTINUOUS and DIG16_MPLUS_SHUTTER_ON.

Note that the camera control unit must be switched to ‘Computer’ for this function to have any effect, and the
shutter switch on the camera control unit may be need to be set to ‘Off’. See the camera’s manual for details
of how to do this and for full descriptions of the available camera modes.

The mode parameter should be a combination of the following:

MODE

DIG16_MPLUS_CONTINUOUS This sets the camera mode as ‘Continuous’, so it continuously starts a
self-timed expose-transfer-idle sequence, regardless of the setting of
frame-reset/exposure.

DIG16_MPLUS_TRIGGERED This sets the camera mode as ‘Triggered’, so it continuously starts a
self-timed expose-transfer-idle sequence if frame-reset/exposure is low
(i.e. expose).

DIG16_MPLUS_CONTROLLED This sets the camera mode as ‘Controlled’, so it continuously starts a
expose-transfer-idle sequence if frame-reset/exposure is low (i.e.
expose), and the exposure time is controlled by frame-reset/exposure,
which is driven by the baseboard timer. DIG16_set_timer must be
called to set the required exposure time.

DIG16_MPLUS_SHUTTER_RUN This sets the camera shutter running.

DIG16_MPLUS_SHUTTER_OPEN This locks the camera shutter open.

DIG16_MPLUS_FRAME_EXPOSE This drives the camera frame-reset/exposure line low, so an exposure
can start (depending on the mode selected above).

DIG16_MPLUS_FRAME_RESET This drives the Megaplus frame-reset/exposure line high.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_mplus_ctrl 85

EXAMPLES

To set the a Megaplus camera in Continuous mode with the shutter running:

DIG16_set_mplus_ctrl(Hdig16, DIG16_MPLUS_CONTINUOUS | DIG16_MPLUS_SHUTTER_ON);

The following will result in a parameter conflict error because the camera cannot be in Continuous mode and
Triggered mode at the same time:

DIG16_set_ctrl_io(Hdig16, DIG16_MPLUS_CONTINUOUS | DIG16_MPLUS_TRIGGERED);

BUGS / NOTES

There are no known bugs.

The function relies on the pin connections in the camera cable matching those of the standard cable part
number CBL-68-37D-A-2M. A cable with different I/O connections could be used, but direct calls to
DIG16_set_ctrl_io would be needed.

SEE ALSO

DIG16_set_ctrl_io.

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_X1400_ctrl 86

DIG16_set_X1400_ctrl

USAGE

Terr DIG16_set_X1400_ctrl(Thandle Hdig16, Tparam mode)

ARGUMENTS

Hdig16 Handle to Snapper-DIG16.

mode Required control mode.

DESCRIPTION

This function allows control of the Xillix MicroImager 1400 camera by making appropriate calls to
DIG16_set_ctrl_io. DIG16_initialize(..., DIG16_XILLIX_1400) calls it with the parameter
DIG16_X1400_FREQ_8MHZ.

The camera exposure is set by the DIG16_set_timer function.

The mode parameter should be one of the following:

MODE

DIG16_X1400_FREQ_500KHZ This sets the camera clock frequency to 500kHz.

DIG16_X1400_FREQ_1MHZ This sets the camera clock frequency to 1MHz.

DIG16_X1400_FREQ_4MHZ This sets the camera clock frequency to 4MHz.

DIG16_X1400_FREQ_8MHZ This sets the camera clock frequency to 8MHz.

Lower readout frequencies are used to improve noise characteristics whereas higher readout frequencies are
used when acquisition speed is more important.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The Snapper-DIG16 handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAM_CONFLICT Two or more of the mode parameters conflict with each other.

EXAMPLES

To set the MicroImager 1400 camera to run at 4MHz clock frequency:

DIG16_set_X1400_ctrl(Hdig16, DIG16_X1400_FREQ_4MHZ);

The following will result in a parameter conflict error because the camera cannot be set to run at 4MHz and
1MHz at the same time:

DIG16_set_X1400_io(Hdig16, DIG16_X1400_FREQ_4MHZ | DIG16_X1400_FREQ_1MHZ);

BUGS / NOTES

There are no known bugs.

Different camera types are defined to allow use of the two MicroImager 1400 clocking modes. These are
DIG16_XILLIX_1400 for normal clocking mode and DIG16_XILLIX_1400BIN2 for 2x2 binning mode. The

Snapper-DIG16 Programmer’s Manual v4.0.1 DIG16_set_X1400_ctrl 87

DIG16_initialize function must be called with the appropriate parameter to reconfigure the camera for the
required binning option.

After the CCD has been exposed the MicroImager 1400 camera outputs the full frame of data and cannot be
stopped. If the ROI is set to be much less than the full image height, it is possible for the image data to be
processed before the camera has finished outputting the current frame. If another capture is then initiated, the
CCD will be re-exposed and will generate a multiple image. The application software must therefore ensure
that the camera has completed outputting its data before another capture is initiated, by use of a suitable
delay. The delay value must take into account the number of lines of data not stored as part of the ROI, the
MicroImager 1400 camera clock frequency, and the binning mode selected.

SEE ALSO

DIG16_set_ctrl_io.

	Introduction
	Concepts
	CONVENTIONAL CAMERAS
	LINE SCAN CAMERAS
	DATA STREAM MODE

	Function Overview
	INITIALIZATION FUNCTION
	IMAGE CAPTURE FUNCTIONS
	CONFIGURATION FUNCTIONS
	PARAMETER READBACK FUNCTIONS
	CAMERA SPECIFIC FUNCTIONS

	Error Returns
	Sample Applications
	AREA SCAN MODE EXAMPLE
	LINE SCAN MODE EXAMPLE
	DATA STREAM MODE EXAMPLE

	Function List
	INITIALIZATION FUNCTION
	IMAGE CAPTURE FUNCTIONS
	CONFIGURATION FUNCTIONS
	PARAMETER READBACK FUNCTIONS

	DIG16_capture_to_image
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_active_area
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_camera_LSB
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_camera_MSB
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_camera_type
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_capture_status
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	SEE ALSO

	DIG16_get_ctrl_io_status
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_data_width
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_FIFO_status
	USAGE
	ARGUMENTS

	DIG16_get_ID
	SEE ALSO

	DIG16_get_LUT_max_addr
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_parameter
	USAGE
	ARGUMENTS
	PARAMETER

	RETURNS
	EXAMPLES
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_property
	USAGE
	ARGUMENTS

	DIG16_get_rev
	USAGE
	ARGUMENTS
	SEE ALSO

	DIG16_get_ROI
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_ROI_max
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_get_subsample
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_initialize
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_initialize_LUTs
	USAGE
	ARGUMENTS
	MODE
	REQUIRED_BITS

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_is_field1_captured
	USAGE
	ARGUMENTS
	RETURNS
	BUGS / NOTES
	SEE ALSO

	DIG16_is_trigger_started
	USAGE
	ARGUMENTS
	RETURNS
	BUGS / NOTES
	SEE ALSO

	DIG16_read_video_data
	USAGE
	ARGUMENTS
	TMG_ACTION

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_active_area
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_alignment
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_callback
	USAGE
	ARGUMENTS
	TYPE

	CALLBACK FUNCTION DEFINITION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_camera_info
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_capture
	USAGE
	ARGUMENTS
	INITIALIZE
	SUB˚SAMPLE CONTROL (LINE SCAN MODE)
	SUB˚SAMPLE CONTROL (DATA STREAM MODE)
	INITIAL FIELD CONTROL
	SEQUENCE CONTROL
	TRIGGER CONTROL
	PARAMETER INTERACTION

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_clk
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_comms
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_ctrl_io
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_data_stream_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_format
	USAGE
	ARGUMENTS
	SNAP_FORMAT

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_image
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLE
	BUGS / NOTES
	SEE ALSO

	DIG16_set_image_data_width
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLE
	BUGS / NOTES
	SEE ALSO

	DIG16_set_interrupts
	USAGE
	ARGUMENTS
	TYPE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_linescan_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_LUTs
	USAGE
	ARGUMENTS
	MODE
	ALIGNMENT AND SCALING
	LUT ARRAY SIZE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_parameter
	USAGE
	ARGUMENTS
	DESCRIPTION
	PARAMETER

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_ROI
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_ROI_rounding
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_timer
	USAGE
	ARGUMENTS
	MODE

	DESCRIPTION - LINE SCAN MODE
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_trigger
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	Camera Specific Functions
	DIG16_set_C4742_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_mplus_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	DIG16_set_X1400_ctrl
	USAGE
	ARGUMENTS
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

