TMG Library

Programmer’s Manual

Active Silicon Limited

v4.0.1

TMG Programmer’s Manual v4.0.1 i

Disclaimer

While every precaution has been taken in the preparation of this manual, Active Silicon Ltd assumes no
responsibility for errors or omissions. Active Silicon Ltd reserves the right to change the specification of the product
described within this manual and the manual itself at any time without notice and without obligation of Active
Silicon Ltd to notify any person of such revisions or changes.

Copyright Notice

Copyright 111992-1999 Active Silicon Ltd. All rights reserved. This document may not in whole or in part, be
reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or translated into
any language or computer language without the prior written consent of Active Silicon Ltd.

Trademarks

“Apple”, “Macintosh” and “MacOS” are trademarks of Apple Computer Inc. “AMCC?” is a registered trademark of
Applied Micro Circuits Corporation. “Dallas” is a registered trademark of Dallas Semiconductor Corporation.
“Dell” is a registered trademark of Dell Computer Corporation. “Flash Graphics” and “X-32VM?” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks” and “CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS”, “Windows”, “Windows NT”, “Windows 95”, “Windows 98”,
“Win32”, “Visual C++” are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is a registered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris’
are registered trademarks of Sun Microsystems Inc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks” and “Tornado” are registered trademarks of Wind River
Systems Inc. “Xilinx” is a registered trademark of Xilinx.

All other trademarks and registered trademarks are the property of their respective owners.

El

Part Information

Part Number: TMG-MAN-LIB
Version v4.0.1 September 1999
Printed in the United Kingdom.

Contact Details

Web www.active-silicon.com Head Office:

Support support@active-silicon.com Active Silicon Limited.
pp pp @ Brunel Science Park, Kingston Lane

Uxbridge, Middlesex, UB8 3PQ, UK

Tel +44 (0) 1895 234254
Fax +44 (0) 1895230131

http://www.active-silicon.com/
http://www.active-silicon.com/
mailto:support@active-silicon.com

TMG Programmer’s Manual v4.0.1

ii

TMG Programmer’s Manual vv4.0.1 i

Table of Contents

IETOAUCTION ...ttt sttt b et b et eb et b et e bt et b et et be et b et n e 1
L1071 17C) o KO OO OO PSPPSR PR PSP 2
LIDIAIY STIUCKULEveveetieetieit ettt ettt et ettt et e et e bt et e e e e sste e st e sseenseanseesseesaeeseenseenseenseensesnsesnsesseanseenseenseensennsenseens 5
PIX@L FOTIMALS ...ttt ettt b e sttt b e s et h e ettt s et eb e st et b e s et a et st 6
EITOT RETUIIIS ...t st s 8
OPEratiNng SYSTEM ISSUCS ...eeuvieiiiiieiieeiteie ettt ettt et e et e st e e esteeaeestee st esseeseeeseenseenseesseenseanseenseensesssesseanseenseensens 10
Image Display Functions and EXAMPIES..........c.eeiuieiiiiieiieiieiie ittt ettt et eeaestee e eseenaesneesseesseenseenseensens 12
SAMPIE APPIICATIONS ...vvieiiieiieeiieie ettt ettt et eteete et e s et e s st eseeseeeseeesee st anseasseasseeseenseenseenseenseenseensesneesneanseenseensennsens 20
FUNCHION LIS ...ttt b ettt st b e st b e sttt a ettt ettt st eebe et saeneenens 28
LY (O S o1 1) 3 TSRS 33
TMG_CK CHIOMA K@Y ... uiitietieiieiieie ettt ettt ettt e st e st e st et e e et eseeeateeseense e seenseenseenseensenseensesnsesneanseenseensennsens 35
TIMG CK L CTRALE. ..ottt ettt ettt ettt e et e ettt e st e e eat e sab e e eab e e sa bt e bt e e sab e e st e e eab e e bt e esb e e bt e e snbeebbeennbeenbbeanneeens 36
TIMG_CK ESIIOY ..nvieiiieiieiietieie et eitestte st e steesteeteeaeeeaeesstenseenseesseassesaeesseasseanseenseenseesseesaesseenseanseensesnsesseanseenseensennsens 37
TMG_CK destroy UV 10 hUE LUT ..ouiiiiiiieii ettt ettt esseesaesntesseesseenseenseeneens 38
TMG_CK generate UV _t0 hue LUT ..oooiiiiiiiii ettt ettt e st e e e sneesneesseeseenseeneens 39
TIMG _CK Gt COMPOMNEIL....eiuiiieiiieiiteriieeitt ettt ettt e sttt ettt e sttt ettt e sttt eaateestte ettt essbeasbeesaseensbeensbeenbeeanaseebbeenseeensseannseens 40
TIMG _CK Gt PATAIMELET ...eeeitieiiiieiitieeiee et ee ettt st e sttt e st esat e e sabeesateesate e bt e e sabe e et e e sabeebbeensbeenbbeenaseesbeenneeensbeanareens 41
TMG_CK get YUV values, TMG_CK get YUV values RGB......cccccooiiiiiiiiiiceeeeee e 42
TIMG CK ST PATAIMEIETuveeitieiitieriieeeiieeeitte et ee ettt e st e sttt e sate e sttt e sabe e sttt e sate e bt e e sab e e st e esabeebbeensbeenbbeasnbeesbeennbeensseanareens 43
TIMIG _CIMAP COPY -vtenvreeniiteniteenittesiteesiteesittestteesateesateesabeesateeeabeesabeeeaseeeabeeenbeesabaeeabeeeabaeeabeeeabeesbeenbbeasnbeesbeennbeensseennbeens 44
TIMG _CIMAP_ GEINETALE.veeeutieeitieeitieeiteeeieeeittesatee st eesatee ettt esateesateesabe e st e essbeesteessb e e st e e saeeesbeesbeeasbeennbeesbeennbeennbeennreens 45
TIMG_CMAP_ ZEE OCCUITEIICES ...eeueveenerierireeitteriteentttesiteestttessse ettt essseeaseeessseaaseeensseaaseeesseeeasaeensbesabeeennseebseenseeensseannseens 46
TMG_cmap get RGB COLOUTiiiiiiiiie ittt ettt ettt et e be e s e enee e e e sstensesneesneenseaseenseensens 47
TMG_cmap find CLOSESt COLOUL......iiiiiiiiieiieciie ettt ettt ettt et esbe e e enaeeneesstenaesneesseesseenseenseensens 48
TMG_CMAP 1S GIAYSCALC....cueeeueeeiieiiieiieie et ete et et et esteeetestaeste e seenseeaeesseasseesseanseesseessenseenseenseanseensesnsesneenseanseensennsenn 49
TMG_CMAP_ SCT COLOUL ..ttt ettt ettt et e st e et e e st e e st easeesseesaesseesseesseeseeneanseenseensesneasseeseenseensens 50
TMG_cmap SEt RGB_ COLOUT ...uuiiiiiiiiiiie ettt et ettt et e e be e beenae e e e sstensesneesneesseeseenseensens 51
TIMG _CIMAP_ SEL LYPC eeetiiiuiieeitie ettt ettt et e ettt e st e s it e st e e sat e e sab e e et e e st e e bt e e sab e e st e e sateebbe e st e e bt e esabeenbbeennbeensbeennreens 52
TMG_display DOX_fIll [DOST .. ueiiieeieeieeit ettt ettt et e st et e et esteesbe et aesseeseenseensesneesneasseanseensennsens 54
TMG display clear [X WINdows, DOS]....cc.coiiiiiiiiiiiiee ettt sttt ene 55
TMG display €map [DOS] ..ottt et et ettt be bttt e st et a et eie e ene 56
TMG display cmap install [X Windows, DOS]cc.coiriiiiiiiiiiieeneseseee ettt 57
TMG dISPIAY CTEALE......cueeutintitirtieteeit ettt ettt ettt b et a ettt e st beeb e ebeeb e ea s et e st e e bt sbe et e e st estenaesbesbeeueennens 58
TMG dISPIAY AESTOY ...ttt ettt b ettt et e b e e bt ea e eat e st e e bt sb e et e et es e naenbenbeeaeennens 59
TMG display direct W31 [WINAOWS 3.1 . .ciuiiiiiiiiiiiiee ettt sttt 60

TMG _display draw teXt [DOS]....coieiiiiiiirieetire ettt ettt sttt eb e bt et et ettt e et et e ae st b saeeinene 63

TMG Programmer’s Manual vv4.0.1 ii

TMG_ diSPlaY G FIAZS «..eeeeieiieite ettt sttt ettt et e a e et e bt et e bt e bt e bt et eaee bt e nteeteens 64
TMG _display get hWnd [WINAOWSoouiiiieiiiiieieeieee ettt ettt et e e ettt seeeseeesaeenteenteens 65
TMG display get paint hDC [WINAOWS]....coouiiriiiiieiiiieiieiieeee ettt ettt st e e enteeneeens 66
TMG_ diSPlay GOt PATAIMECLET ...e.eveiieniieniieite ettt ettt et e et te st e bt e bt e bt saee s bt e st e e bt em et eae e et e e bt e been bt enbeemtesmeeseeenseenseenteans 67
TMG _diSplay gt RO ...ttt ettt h et e bt et eat e s bt e s bt e bt e bt e et eneeseeesseenbeenteans 68
TMG dISPIAY TMAZE ..ottt et ettt ettt e h et e bttt eate s bt e s bt ea bt em et eateebe e bee b e e bt enbeembeeneeseeeeneenbeenteans 69
TIMG AISPLAY TNttt ettt h ettt e at e sb e e s bt e bt e s et ehe e ehe et e e sb e e b e e bt e bt e bt eeeesheesbe e teenteens 71
TMG _display print DIB [WINAOWS].....oouieriieiiiiiiieeieeteee ettt ettt ettt e ettt et seeeseeesaeenbeeneeens 75
TMG dISPIAY ST IS .ottt ettt et sttt et e e et e a e eb e et e e b e e bt e bt et e enteeeeeeneenteeteens 77
TMG _display set font [DOS] ...ttt ettt et e a e st e st e bt et e et saeeseeesaeenbeeneeens 78
TMG _display set hWnd [WINAOWS]ooeiiiiiiiiiiiieeeeee ettt ettt st e e e sbeenteeneeens 79
TMG_display set MAaSK [IMAC]....coiiiiiiie ettt ettt et e e st e b e bt et estesseeseeesbeenbeenteans 80
TMG display set paint hDC [WINAOWS]coruiiiuiiiiiiieiieiieiieeete ettt sttt s e b e e eneeens 81
TMG_ diSPlaY SET PATAIMECLET.....e..eetietieniieiie ettt ettt ettt et ee st e bt et e e bt saee s bt e sbe e bt eateea e e et eenbeenbeenbeenbeemtesmeeseeenbeenseenteans 82
TMG_diSPlay SEt ROL......oouiiiiiiieiiet ettt ettt h et e et ee e s bt e s b e e bt e bt emtesstesseesneenbeenteans 84
TMG _display set Xid [X WINAOWS]....oiiiiiiiiiieiieee et ettt ettt ettt e bt e e et st seeesbeenbeenteens 86
TMG _IMAZE CAIC TOLAL SETIPS..uiietiiiiiieiieeitieeitie et et eetee et e st e et esibeesateesabeessseessseessaeessseesseeessseensseesseensseenssaensseens 87
TIMG IMAZE CHECK ...veiiiiieiiieiiieetee ettt ettt st e et e et eetaeeaeeeataeesseeeataeanseeensaeansseensseensseesseennseenssaansseens 89
TMG _1MAZE CONV_LUT dESTIOY...ccuiieitiieiieiiiieeitieeiteeeteeesteeeteeeteeeteeeteessteeeseeesseessseesssaeasseessseesnseeensseensseessseensseees 90
TMG _1Mage CONV_LUT GENETALE......eeecuieitieetieiiieeieeeteeste ettt esteestteessteesaeessseesaeesseeessaeasseessseeasaeensseessseessseenseees 91
TMG _1mage conV_LUT L0AG ..cccviiiiiiiiieiiieeie ettt ettt et e et e et e eteeebeeestaeesseeesseeasaeesseensseensseansseenes 93
TMG _1MAZE CONV_LUT SAVE ..ieiuiiiiiiieeiiieiiieeteesitt e st eseteesteestteesae ettt essseessseessseesseessse e sseensseesseensseensseensseensseansseenns 95
TIMG IIMAZE COMVETL.eeuutieitrieiurieeteereteerteestteesseessseesseeessseessaeessseessseesseensseesseensseessssesssesssseessseessseessseesssesssseessseensseenns 96
TIMG IIMAEE COPY veenvveenrrierureenureensteentteessseesseanseeanseeassseesseeasseesnsseasseessseeasseesnsesasseesssesansessnsesanseesnssssnsessnsssessesessseensees 101
TIMG IIMAZE CTEALE ...vveeuvieeureeeiteeeieesteeateestteensteessseensaeeasseesseensseenseeensseasseesnsaeenseesnseeanseesnsaeanseesssseenseeensseensesensseensees 103
TIMG IMAZE AOSITOY ..eeuttietrietieeitieeitieertte ettt estteetteetteesteeeteeeateeesseesnsaeasseesssaeanseesnseeanseessseeanseeensseenseesnsseenseeenssesnseen 104
TMG _image find file fOTMAL.........cccuiiiiiiiiieiie ettt ettt et e e et e et eeteeesteeeseeensaeessaeesaeenneees 106
TMG IMAZE fT€E AALA....ccciiiiiiiiiieiiieee ettt et e et e et e et e et e s ebeeeabeessbeeesseessseesssaeansaeenseeensseenseeansaeeneeen 107
TMG IMAZE GO FIAGS c..vieiiiiiiiiieeie ettt ettt ettt e et e e bt e e bt e e saeessbaeesbeesabeeesseessbeeasseeensseenseeenseeenseeensaaeneean 108
TMG image get infilename, TMG image get outfllename..........cccoeoiiiiiiiiiiieiiiieiie et 109
TMG IMAZE ZET PATAINCLETeeeeiieieentiete ettt te st et ettt e et e s bt e bt e bt e st e eseesheesbee bt eneeeaeeese e et eenbeenbeenbeenbeenbeenteeneeenes 110
TIMG IMAZE GO P oottt ettt et ea e bt et e bt e et e e e e e bt e sb e e sb e e bt eae e e e et saeeehteebeenbeenbeenbeenbeenaeeneeenes 111
TIMG _IMAZE 1S COLOUT ...ieiiiiiiieiiieeitie ettt eete et teete et e e teesabeeesseessbeeesaeessbaessseeasseeesseessseenssaeensseenseesnsseenseeensseenneean 113
TMG _IMAZE MAIIOC @ SIIIP teuvieiiiieiiiieiieeiteeete ettt et e ertteeteeeteeebaeesaeessbeeenseesnseeenseesnseeasseessseeenseeensseenseeensseenssens 114
TIMG IIMAZE INOVE ...uvieivierureeritieriieestteentaeeteeesseeeteeassaeessaeasseesnseeasseesssaeasseessseessseesssesssseesssesnsseesssssensessnssesssseessseenseees 115
TIMG TMAZE TEAM...cutieiiiieiiieitiieeie ettt eete et e et e et e eete e teeesseeeateeesseessteeasseessseessseeasseeasseensseeanseeenseeenseeensseenseeensseenseean 117
TIMG TMAZE SEE H1AZS . tieeiiiiiiiieeiteiieeete ettt ettt e et e et e eteeesbeeesaeesabeeeaseessbeeenseessseesssaeensaeenseeensseenseeaseaeneean 119

TMG image set infilename, TMG_image set outfilename...........cccceeviiiiiiiriiieiiienie e 121

TMG Programmer’s Manual vv4.0.1 il

TMG IMAZE SCT PATAIMELET ...c..veiutetietietiete ettt e etee et eteeateette et ee s bt e bt esbeaseesaeeseeesbeeneeemteeaeeeseeaseesbeenbeenbeenseenteeneeeneeans 122
TIMG IIMAZE ST PUL .ottt ettt ettt ettt et et et e ettt e st e eb e e bt em bt es bt eo e e sbeesb e e bt eaaeemeeeseesbeeenseebeenbeenbee bt enteeneesneens 124
TIMG IIMAZE WITLE ..ttt ettt ettt et a et et e e st e e bt et e e a et e aeese e e eb e e et emt e em et eb e e eaeeebeenbe e beebeenteeneeeneenne 125
TIMIG TP CTOP ettt ettt ettt ettt ettt ettt et et e et e et e et e e he e e bt e e bt e bt em bt em bt ea et ee e e e bt ee b e eneeebeesbee bt e bt enbeenteeneeene 127
TMG TP EXETACT TEZIOM c.eieiiiieiietiete ettt sttt ettt ettt et eeh e bt e bt et e et e eaeese e e sb e e et emt e en et emeeebeeebeenbee bt ebeeneeeneeeneeans 128
TMG TP fIIEET 3X3 oottt et b bbbttt b bt b et b et be e 129
TMG TP @ENETALE AVETAZES . .e.uveeueetieteetieteanteaiteattentteteesteesteaseesteenseense e st ameesaeesaeeaseenseenteanteeseesbeenbeenbeenbeenseeneeaneeans 131
TMG TP hiSTOZIAM. CLEAT.... ittt ettt ettt he et e bt en bt es e eaeeebeenbee bt enbeenteeneeenneans 132
TMG TP hiStOZIAM fIIECT...c..eitiiiiiii ittt ettt ettt ebe e st e st e e bt e bt e bt eneeenteens 133
TMG TP hiStOZIAM GENEIALEecuveitietietieteeite et ette it et ettt e et e stte st e e bt e et emtesseees e e eae et e en bt embeeneeebeenbeenbeebeenaeeneesneeans 134
TMG TP hiStogram MATCR........coouiiiiiiiiiiit ettt ettt ettt et eat et e st e e bt e bt eteenteeneeens 135
TMG TP IMUITOT TIMAZE . etetietietientteiteeete ettt ee bt et ettt eteeste et e emteemteeseesaeesbeesb e e et emeeemeeeseeebee s eeebeenbeenbeebeenteeneeeneeans 136
TIMG TP PIXEL TP ettt ettt ettt ettt et et e et e et e e bt e s bt e bt em et eme e ea e e ebteeseeebeesbe e beebeenteeneeeneeans 137
TMG TP TOtALE IMAZE ..eeuveeutieiiieiietieteete ettt ettt et ea bttt et e s bt e bt e bt e bt eatesaeesa e e bt et e em bt emteeseeebeenbeenbeebeeneeeneeeneeans 138
TMG TP SUDSAIMPLE ...ttt ettt st b ettt e et s bt e ea e e beenbe e bt eaeenteeneesneeeae 139
TMG TP threshold @raySCalecceoiiiiiiiiii ettt ettt ettt et e b e sbeeteeneeeaeeeae 140
TMG _JPEG DUTTET TEAG ... eiieiieiiieeiie ettt et ettt et e et e et e e saaeeesbeessaeessseensseensseesnseesaseeanseennns 141
TIMG _JPEG DUTTET WITEE ... viietieiiieeiie ettt ettt ettt et e et e et e et e eaaeestaeesaeensaeesaaensseessseensseesnseesnseesnseennns 142
TMG _JPEG DUILA TMAZE.....eietiiiiiieiie ettt ettt ettt ettt et e et e et e et eessae e taeessaeensseessseensseessseensseeanseesnseesnseennns 143
TIMG _JPEG COMPIESS....vieiutieeiieeiieeieeetteesteeeteeesteesteeesseeesseessseessaeessseeasseessssessseensseessseessseessseessseesssesanseesseesssessnne 144
TMG _JPEG _cOmPress iMage t0 TMAZE ...ccveeevreeruieeiieeriieesieeeneeesteeesteeesteeessaeesaeesssesssseessseessssesssesssseessseessseesssessnne 145
TIMG _JPEG @COMPIESS ... uvveeutieiiieeiieetteeitie ettt eteeeteeesateestseessseeasseessseessseessseessseessseessseesssaessseessseesssessseessesssseesnns 146
TMG _JPEG_decompress IMaZE t0 IIMAZE......cuueerueeerureereieerireeniteesiteeneeesteeessseessseesssesssseessseessseessseessseessseessseesssessnne 147
TIMG _JPEG 118 ClOSE ...uviiiuiieiiieiiiieeie ettt ettt site e et e st e e st e e s tbeesabeessbeessseesssaesnseessseeessaeasseensseenssassnseesnseennseennn 148
TIMG _JPEG 118 OPEIN c.eeieiiieiiiieiiieeiee ettt ettt et e et e et e et e et e e st eestbeessaeessbeenaseessseeensaesaseessseenssaesnseesnseennseennns 149
TIMG _JPEG {118 TEAM ..ueviiiiieiiieiie ettt sttt ettt et e ettt e s bt e st e e s abeessaeessbeessaeessbeeessaessseessseenssaeanseesnseeanseennns 150
TIMG _JPEG 118 WITEEveeiuvieeiieeciieeeie e et eette et e ettt e st e e stte e st eessaeestaeesaaeesaeessaeensaeesseesseesaeensseensseenssaeenseesnseeanseenns 151
TMG _JPEG TMAZE CIALE ..veevvieiiiieriieeiiteeeiteeiteeeteestteestteessteessteessseessseessseessseessseessseessseessseessseessseesssessnseesseesnseesnns 152
TMG _JPEG _SEqUENCE DUILA.....eiiiiieiieiiiieie ettt et ettt e et eesaaeestbeessaeentseessseensseesnseesnseennseennns 153
TMG _JPEG sequence Cale IeNGth........ccuiiiiiiiiiiiiieiieeceecteeee ettt ettt e e e e st e e ssseensseesnsaesnsaesnseennes 154
TMG _JPEG _SeqUENCe eXtraCt fTAMEcevviiiiiieiieeiiieiieeitiesiteeeteeste e sttt esaeestbeessaeessseessseessseessseensseesnseesnseesseennns 155
TMG _JPEG _sequence St Start framME.........cccccuierieiiiiieiieeiieeieesieeeste et e eseeeieeeseeeestaeessaeesteeessaeesseesnseessseesnseennns 156
TIMG _JPEG _SEE IMAZEeecvveeeiieiiieeiiieeeiteeeteesiteestteestteestteestbeeasteessseeasseessseessseeasseessseessseessseessseessseessseesnseessessnseesnns 157
TMG _JPEG 8t QUALILY FACTOT ..eetiiiiiieiieeiie ettt ettt et e et e et e et eeteestaeesseesabeeenaeensseesnseesnseeenseennns 158
TMG _JPEG_set QUantization FACLOTcociiiiuiieiieeiieeciieeitteetteeiteeieeetteeaeeeteeenaeesbeeessaessseeenseessseesnseesnseesnseennns 159
TIMG LUT PPy -eteetieeiie ettt ettt et ettt e et e et e et e e aee et e e st e eabaeeaaaeeasaeesseeensaeansaeensaeenseaeasseensseensseesnseesnsaennseennss 160
TIMG LUT _CT@ALE ..eeuvveeeieeiiiieeiieesite ettt eeiteeetteesiteeseteestbeessaeesebaeasseeassaessseessseeasseeassaasnseesssaeassaensseensseensseeanseesnsaesnseennne 161

TIMG LUT A@SIIOY ..evteeutieiitieeiieetieeieeetteestte ettt esiteestteessaeesssaeasseesssaessseesssaeanseesnseeanseesnsaeenseensseensseensseesnseesnseesseennns 162

TMG Programmer’s Manual vv4.0.1 v

TIMG LUT ZENETALEeeuteeiieeiieeteeteete ettt et ettt ettt ettt e e bt et e em bt es b e es e e ebeesbeesb e e bt eaeeeeeesseeeateeaeeabeenbeenbeenbeeneeeneeenee 163
Y (5L 0 A< A o] OO OSSPSR 164
TMG_SPL 2fIeldS 0 fTAIME c...etiiiiiiieiiee ittt sttt ettt es e et e st e bt e b et e e e eneeenee 165
TMG _SPL _Data32 10 Y8 ..oueieiiitiieiiitireetitert ettt ettt ettt ettt sttt st ettt st et b e bttt et e bt et e se et et neenea 166
TMG _SPL_fIeld t0 fTaME ..ottt sttt ettt et ettt e b e b e sbe e bt eae e e e 167
TMG _SPL HSI t0 RGB_ PSEUAO COLOUT ...ttt ettt ettt ettt et e 168
TMG_SPL YUV422 to RGB_PSEUAO COIOULiiiiiiiiiieiieie ettt 169

TMG_SPL XXXX32 10 Y8 ...oooeovveeeeeeeeeeeeeeeeoeeeeeeeeeoeeeeseeseeeeseeeseeeeeeeeseseeeeeeesee e eeseeeeeeeeseeeeeessseeeeesseeeeeeee 170

TMG Programmer’s Manual v4.0.1 Introduction 1

Introduction

This manual describes the “TMG” image processing and display library. This library contains functions for reading,
writing, displaying and manipulating images under a variety of operating systems.

Under Windows NT, Windows 95 and Windows 3.1, the library is available as a dynamic link library (DLL). Under
MS-DOS, the library is available as a static 32 bit library for Symantec C++ (using DOSX/X-32VM) and

Watcom C++ (using the 32 bit flat model). Under Solaris 2 it is available as a dynamic library (.so - shared object).
Under MacOS it is available as a shared and static library. Under LynxOS and VxWorks, it is available as a static
library. The API is identical across all supported operating systems, apart from some minor variations related to
mainly display functions. The software development kit contains example code to illustrate how to use the library in
real applications.

The following sections describe the concepts, structure and methodology behind the library, as well a section with
detailed examples covering all the key areas. Finally each library function is described in detail. As this library is
licensed predominantly with the “Snapper” image acquisition hardware, many examples refer to Snapper image
acquisition functions, although alternative acquisition hardware could equally be used.

It is strongly recommended that all the introductory sections in this manual are read and the examples provided with
the SDK are examined before using the library.

TMG Programmer’s Manual v4.0.1 Concepts 2

Concepts

OVERVIEW

All the TMG functions use a “handle” to represent the image, referred to as an “image handle”. This handle is a 32
bit unsigned integer. Each TMG routine uses the handle(s) passed into it to reference a pointer (through an internal
global array index) to an image structure, which contains all the image parameters and the image data itself (or a
strip of the image). See the file “tmg.h” for details of the actual image structure (called struct Timage).

Each function is designed to operate on the whole image or a strip within the image. Strip processing allows several
functions to be chained together using only a small amount of memory. This is necessary when processing large
images or performing many processing operations in a chain such that the full images cannot be accommodated in
memory. Another benefit with processing small amounts of memory (or strips of the image at a time) is the potential
performance benefit from the use of the processor’s cache. However with the large amounts of memory available in
computers nowadays, it is often simpler and unnecessary to consider strip processing.

A SIMPLE EXAMPLE

The best way to gain an understanding of how to use the library is by example. A simple example in ‘pseudo code’
is shown below.

Generally speaking all image processing applications acquire an image, perhaps from a camera or read it from disk,
perform some operation(s) on that image, then write it back to disk, display it or even discard it. This operation can
be fairly memory intensive, if the images are very large. The TMG library copes with large images by processing
images in strips as discussed above. The basic idea of strip processing is to read, process and write the image, N
lines at a time.

For example, an image with dimensions is 256 x 256 could be processed 8 lines at a time. This would require 32
processing operations - i.e. 8 x 32 =256. This is precisely how the TMG library operates. In ‘pseudo code’ the
algorithm would be as follows:

Create the image structures (TMG_image_create).
Read the image to find out its dimensions (TMG image read).
Set the strip size to 8 lines per strip (TMG _image set parameter).
Calculate the number of strips in the image (TMG _image calc_total_strips)
For each strip:
Read in a strip (TMG _image_read).
Image Processing Operation Number 1 (e.g. TMG _IP_crop).
Image Processing Operation Number 2.
Image Processing Operation Number 3 etc...
Write a strip back out (TMG _image_write).
Destroy the image structures (TMG _image_destroy).

Of course if the strip size was set to the height of the image, there would be no need for the strip loop - i.e. each
function would only be called once and the code required much simpler.

For normal operation the final parameter on any strip processing function is set to 7MG RUN. If for any reason the
strip processing operation was aborted before the whole image was processed, the processing functions should be
called with TMG RESET to reset internal statics that keep track of how much of the image has been processed. For
example the operation may need to be aborted before it is finished. In practice TMG RESET is rarely needed.

TMG Programmer’s Manual v4.0.1 Concepts 3

For the more “modern” 32 bit operating systems, such as Windows NT, Solaris 2 etc, it’s easier to always process
the image in one strip (i.e. the whole image at a time). There are however several exceptions - for example the
function TMG JPEG compress, is fairly memory hungry and is best used with only 8 lines at a time.

Notice also that in the above pseudo code example it was necessary to read the image’s height so that the number of
strip iterations could be calculated. When processing in one strip, TMG _AUTO_HEIGHT can be used on reading
images - this instructs the read function to automatically read the whole image.

MEMORY ALLOCATION

Each TMG function, that takes an input image and produces an output image, will free any memory associated with
the output image and allocate new memory for it (as long as the memory is not locked). The newly allocated
memory for the output image will be the correct amount for the size of the image that is being processed. This
method is robust, but it is fairly wasteful in the amount of memory re-allocation it does - potentially slowing down
the processing. The solution to this is to lock the memory (using TMG image set flags with TMG LOCKED).

This means that once the memory is allocated - i.e. the first time the function is called, it will never be freed until it is
unlocked (or the image destroyed using TMG image_destroy). This has the benefit that memory is no longer re-
allocated by every TMG process. However there are some potential pitfalls that require a little more care from the
application; the main ones being:

(a) ifalarger image is processed, the output image data area may not be large enough (i.e. it was allocated for a
previous smaller image); and

(b) if the application allocates the memory and locks it, then it must unlock it and free it, because the TMG library
may be using different memory allocation routines than the application.

For the case of the larger image, (a) above, the “root” image (the first one in the chain) would have its memory
unlocked, which will result in all downstream images unlocking, freeing and re-allocating their image memory (the
root image could then be re-locked). There are plenty of examples of this on the SDK release disks. The section on
“Operating System Issues” explains the actual memory allocation routines used for each operating system.

IMAGE DATA VERSUS JPEG IMAGE DATA

Each image handle references an image structure through an internal global array. This image structure contains a
pointer to image data. This image data is usually raster image data, whose amount is related other internal
parameters such as image width and height. However it is also possible to regard this image data as pure data - the
flag TMG _DATA _STREAM indicates that this is the case (in this instance, the “image” is regarded as having a height
of one). Note also that the image data may actually contain a sequence of frames, as determined by the internal
parameter num_frames. Usually however only one image is contained within one image handle, and it’s often easier
to have an array of image handles for sequence work (not always the case for JPEG data - see below).

Within the image structure is a pointer to another structure that may or may not exist depending whether

TMG image create or TMG _JPEG image create was used to create the image. TMG JPEG image create creates
an additional JPEG structure containing all the JPEG parameters and a pointer to JPEG data as well. The JPEG data
can represent multiple frames (“motion JPEG”). In this situation JPEG restart markers are inserted between frames
of JPEG data to allow direct replay (and recording) from suitable JPEG hardware. There are a number of functions
for the manipulation of frames within a JPEG sequence.

It is possible for the application to allocate and setup the JPEG data area in the same way as for image memory area
(see TMG image set ptr). This is the only route when recording a motion JPEG sequence in which the application
knows how many frames and hence how much memory it should allocate. Of course when working with JPEG data,
generally it is not possible to know in advance how much memory will be required. The TMG library allocates an
excess (actually half the memory required for the raw image) and then optimises it later.

The image structures can be seen in the file “tmg.h” available on the SDK disks. The image structure is
struct Timage, and the JPEG structure is struct Tjpeg.

TMG Programmer’s Manual v4.0.1 Concepts 4

ADDING CUSTOM FUNCTIONS

Each TMG function has the same straight forward structure, which makes it convenient for a user to add his own
functions if required. The file “tmg_scl.c”, available on the SDK disks, contains the function TMG [P subsample
which has been written in such a way that it does not need to be compiled into the DLL (or static library) to run.
There are also many helpful comments added. This function may be used as a template for written custom functions.

VIDEO FIELDS AND THE “TMG_HALF ASPECT” FLAG

When used with video acquisition hardware and software (such as Snapper) it may be a requirement that single video
fields are acquired, processed and displayed. The TMG library copes with this through the use of a flag and
parameter associated with the image. The flag, TMG HALF ASPECT, indicates that the image is a half aspect one,
i.e. avideo field. The parameter, TMG FIELD ID, is used to indicate which field it is - i.e. first or second. There
are only a few functions that need to use this information - one is TMG SPL 2fields to frame which is used to
reconstruct a full height image. The other ones that use this information are some of the display functions that re-
interlace the fields whilst displaying to achieve real-time display rates. See TMG display image for more details.

For some further information on the flag and parameter, see the functions 7TMG image set flags and
TMG image_set parameter.

TMG Programmer’s Manual v4.0.1 Library Structure 5

Library Structure

The TMG functions are split into seven main groups that are conveniently indexed by their name. The groups are:

MG CK ...
TMG cmap_...

TMG display ...
TMG image_...
™G IP ...

TMG JPEG ...
™G LUT ..

TMG SPL ..

This group of functions performs operations related to chroma keying.

This group of functions relates to operations with colourmaps (or palettes). For example
their optimum generation etc.

This group performs image display (including printing).

This group performs all the general purpose “housekeeping” type functions.
This group perform image processing functions

This group contains all the function relating to JPEG images.

This group is a set of functions for the generation and manipulation of look up tables
(LUTS).

This group contains special functions that don’t neatly fit into any of the other groups.

Some functions apply only to certain operating systems/environments. These functions have the operating
environment in square brackets after the function name for easy reference. If there is none, then the function applies
to all operating environments.

(Note: The term “operating environment” means the combined operating system and windowing system in use. For
example the Solaris operating environment is Solaris 2 running the Common Desktop Environment, which itself is
running on top of Motif and in turn, the X Windows system.)

TMG Programmer’s Manual v4.0.1 Pixel Formats 6

Pixel Formats

INTERNAL IMAGE TYPES

Internally the image data can be stored in many types of pixel formats. There are quite a few different pixel formats,
but they all have their uses. Some of them are pixel formats from acquisition hardware, some are pixel formats
suitable for saving to standard file formats, and others are pixel formats that match that of display hardware, thus
saving valuable time by allowing direct display. As well as different pixel formats, there are three basic types of
image. Firstly, the ‘standard’ image that contains raw image data in one particular pixel format; secondly, JPEG
images that contain JPEG compressed data; and thirdly, DIB (device independent bitmap) images that contain the
image data in the DIB format suitable for display under certain specific operating systems (Windows NT/95/3.1).

The function TMG_image convert allows conversion between all these different pixel formats.
The pixel formats are as follows:

TMG BILEVEL The image is a black and white “line art” image, where each pixel is represented by one
binary bit. A ‘1’ represents white and a ‘0’ represents black. The binary data is packed
into bytes, such that the MSB is the left most pixel. There is limited support for this type
of image in the TMG library.

™G Y8 The image is a grayscale image, with each pixel represented by one byte, thus allowing
256 gray levels.

™G Y16 The image is a grayscale image, with each pixel represented by up to 16 bits, thus
allowing up to 65536 gray levels. An additional internal image parameter, data_width,
gives the number of valid bits. The data is always LSB aligned.

TMG _PALETTED The image is a paletted (or colourmapped) image, where each pixel is represented by one
byte. This byte is an index into the palette (or colourmap). Typically the palette will
have 256 entries of 24 bit RGB colours.

TMG RGBS The image is a colour image, with each pixel represented by 8 bits, of the form
RRRGGGBRB (i.e. 3 bits for red and blue and 2 bits for green - RGB 3:3:2, with red at
the most significant end). This format is similar to TMG PALETTED and could easily
be represented as a paletted image. For this reason there is limited support (and use) for
this format.

TMG RGBI5 The image is a colour image, with each pixel represented by 15 bits, of the form
RRRRRGGGGGBBBBB (i.e. 5 bits per colour, with red at the most significant end). A
16 bit word is used to store the data with the MSB unused.

TMG RGBI6 The image is a colour image, with each pixel represented by 16 bits, of the form
RRRRRGGGGGGBBBBB (i.c. 5 bits for red and blue and 6 bits for green, with red at
the most significant end).

TMG RGB24 The image is a colour image, with each pixel represented by 24 bits, of the form RGB
(i.e. 8 bits per colour). The arrangement in memory is such that red is the first byte in
byte addressing.

TMG RGBX32 The image is a colour image, with each pixel represented by 32 bits, of the form RGBX

(i.e. 8 bits per colour). The arrangement in memory is such that red is the first byte in
byte addressing. The X refers to an unused plane (although it could be used as an
overlay plane). This format conveniently aligns the data to a 32 bit boundary.

TMG BGRX32 This format is identical to TMG RGBX32 except that the RGB order is reversed. Blue is
now the first byte in byte addressing. This is the native pixel format of most PC based
24 bit graphics cards (in 32 bit, 16.7 million colours mode).

TMG XBGR32 This format is similar to 7MG BGRX32 except that the RGB bytes are shift by one and
the X byte comes first in byte addressing. This is the native pixel format of most
X Windows based 24 bit graphics displays on Sun SPARCstations.

TMG Programmer’s Manual v4.0.1 Pixel Formats 7

TMG XRGB32 This format is similar to TMG_RGBX32 except that the RGB bytes are shifted by one
and the X byte comes last in byte addressing. This format is often used internally by
Mac workstations. There is limited supported for this format.

TMG YUV422 The image is a colour image in the form YUV 4:2:2. This is arranged such that is byte
addressing the data appears as YUYV. This is a standard digital video format for colour
encoded video signals.

TMG HSI The image is a colour image in the form hue, saturation and intensity. The byte ordering
in memory is two bytes for hue, followed by one byte for saturation and one for intensity.
There is limited supported for this format.

MG CMYK32 This is a 32 bit colour format, whereby the image is represented by the “complementary”
colour cyan, magenta, yellow (and ‘black’). There is limited support for this format.

Many of these pixel formats are also used to describe the colour organisation of the display. For example a
Windows NT graphics mode using 65K colours nearly always uses the TMG RGBI6 pixel format.

The data alignment is to 16 bit boundaries, in other words the number of bytes per line is always even. Some
functions (especially when running on 32 bit operating systems) are slightly faster if the data is 32 bit aligned (i.e. if
the number of bytes per line divides by four - this is true of all the 32 bit pixel formats listed above). Odd width
images are not fully supported by all functions, so it is recommended that even width images are used (this is usually
the case with all video related acquisition). Future releases of the TMG library will automatically align to 32 bits (in
fact programmable alignment) and provide full support for odd width images.

ACCESSING THE IMAGE DATA

The data can be directly accessed using the TMG _image get ptr function. Individual pixels may then be randomly
accessed by using the pointer to the image data, knowledge of the bits per pixel (given by the format) and the number
bytes per line (returned TMG image get parameter with TMG BYTES PER LINE).

TMG Programmer’s Manual v4.0.1

Error Returns 8

Error Returns

Almost all of the TMG library functions return a Terr. Terr is a 32 bit unsigned integer, with the bit positions

defined as follows:

31to24 Library identifier (returned on error, otherwise 0 is returned). This is used to allow a top level calling
function to determine the library in which the error occurred.

The identifier is 0x10 (#defined as TMG LIBRARY ID).

23to 16 Error number, otherwise 0 if no error.

15t0 0 Function return value.

If the function call is successful, ASL_OK is returned (which is #defined as 0) or the requested parameter. If an error
occurs, an error number is returned in bits 23 to 16 along with the library identifier in bits 31 to 24.

The following is a list of error codes used by the TMG library, and a description of each error.

BAD_XXX ERRORS
ASLERR BAD HANDLE
ASLERR _BAD IMAGE

‘NOT POSSIBLE’ ERRORS
ASLERR NOT SUPPORTED

ASLERR NOT IMPLEMENTED

ASLERR INCOMPATIBLE

ASLERR NOT RECOGNIZED

FUNCTION PARAMETER ERRORS
ASLERR_BAD PARAM
ASLERR_OUT OF RANGE

ASLERR_PARAM CONFLICT
OPERATING SYSTEM ERRORS
ASLERR_OUT _OF MEMORY

ASLERR THREAD ERROR
ASLERR DRIVER CALL FAILED

ASLERR_SYSTEM CALL FAILED

The handle has not been set up, or is corrupt.

The image structure has not been set up, or is corrupt.

The requested operation is not supported, and is unlikely to be
supported in future.

The requested operation is not currently implemented, but may be
implemented in future.

The requested option is not compatible with existing Snapper
settings.

The requested option is not recognized.

A parameter passed to a function has not been recognised.

A parameter passed to a function is invalid - typically too large or
too small.

Two or more parameters passed to a function are mutually
exclusive.

A system call to reserve memory has failed.
A system call to control a separate thread of execution has failed.

A call to the Snapper device driver has failed. For operating
systems with a console (e.g. Solaris) check the console for any
error messages from the driver.

An operating system call (other than those listed above) failed.
For MS-DOS and Windows 3.1 this is used for BIOS and
graphics driver calls.

TMG Programmer’s Manual v4.0.1 Error Returns

FILE AND RELATED ERRORS

ASLERR OPEN FAILED Open failed.

ASLERR CLOSE FAILED Close failed.

ASLERR READ FAILED Read failed.

ASLERR WRITE FAILED Write failed.

ASLERR SEEK FAILED Seek operation failed.

ASLERR CORRUPT File or data stream is corrupt.
MISCELLANEOUS ERRORS

ASLERR OUT OF HANDLES No free handles were found.

ASLERR INTERNAL ERR An internal error was detected in the libraries.

ASLERR IN PROGRESS The requested operation is already in progress.

ASLERR INVALID STATE The library has detected an invalid state in the software or

hardware, but cannot determine a more specific cause of the
problem.

TMG Programmer’s Manual v4.0.1 Operating System Issues 10

Operating System Issues

The TMG library is designed to run on virtually any operating system (and internally uses the same source code). To
allow this, certain types and functions have been defined in the header files that allow for differences between
operating systems whilst still preserving common source code. Some of the differences are described below. Full
details can be found in the header file “os_sys.h” available with the SDK.

DATA TYPES AND IMAGE DATA POINTERS

Sizes of integers vary between compilers and operating systems and are a potential source of portability errors. To
overcome this the following types are used - that are constant across all compilers and operating systems:

ui8 8 bit unsigned integer (unsigned char)
uil6 16 bit unsigned integer

ui32 32 bit unsigned integer

il6 16 bit signed integer etc.

For pointers to image data the following types are used:

IM UIS* Pointer to an 8 bit unsigned integer
IM Ull6* Pointer to a 16 bit unsigned integer
IM UI32* Pointer to a 32 bit unsigned integer.

These are actually the same as the basic data types above (i.e. IM_UI8* = ui8*) under all operating systems apart
from Windows 3.1. Under Window 3.1 these types include the huge modifier that allows the pointer to auto-
increment across a 64K memory boundary. Note that the huge modifier only modifies the variable to its immediate
right, so the following code will fail:

IMU 8 *pDatal, *pData2; /* Only pDatal is nodified to __huge */

The correct definition is as follows:

IM U 8 *Pdat al;
IM U 8 *Pdat a2;

Under Windows 3.1 the large memory model should be used.

MEMORY ALLOCATION METHODS

The method used for memory allocation varies between the different operating systems. For example Solaris 2 uses
memalign. The #defines MALLOC and FREFE are used internally in the TMG library and are defined in the file
“asl_gen.h” available with the SDK - please refer to this file for more details.

ENDIAN ISSUES

Different operating systems (usually dependent on the processor architecture) will have different byte ordering for 16
bit and 32 bit words. For example most Intel processors are little endian, that is byte 0 is stored in bit locations 0 to
7, where as on a big endian processor (such as the SPARC) byte 0 is stored in bit locations 24 to 31 in a 32 bit word.

Endian issues obviously do not effect the interpretation of 8 bit grayscale data, but will potentially have an effect on
any 16 or 32 bit format (such as TMG Y16 or TMG RGBI6 etc). To avoid potential pitfalls here, 16 bit data should
always be accessed as a 16 bit word (apart from simple copies when 32 bit read/writes can be done). This is what
the TMG library does internally. 32 bit formats, such as TMG RGBX32 are effectively endian independent, because
here the format is defined to be the byte order in byte addressable memory, thus TMG RGBX32 means red in byte 0,
green in byte 1 etc. This means that if read as a 32 bit word the bytes will appear in different locations within that
word on different endian processors. The TMG library is written to take account of this, and any application
program accessing the data directly needs to be aware of this.

CONVERSION LOOK UP TABLES

Some look up tables (LUTs) used within the library have different sizes dependent on the operating system. The
basic rule is that the LUTs may be smaller under Windows 3.1.

TMG Programmer’s Manual v4.0.1 Operating System Issues 11

In summary:
e The TMG LUT suite of functions draws no distinction in LUT size.

* The image conversion LUTs (see TMG _image _conv LUT generate) YUV 4:2:2 to RGB15/16 are 64K bytes
under Windows 3.1 and 1M byte under all other operating systems. These definitions can be found in the file
“tmg.h” under “YUV to RGB LUT Definitions”.

¢ The UV to hue LUT used in the TMG _CK_ functions is 64K bytes under Windows 3.1 and 128k bytes under all
other operating systems. See TMG CK generate UV to hue LUT.

The smaller LUTs used by Windows 3.1 result in a slightly lower conversion quality, but this is not significant.

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 12

Image Display Functions and Examples

The same basic core of functions are used to display images under each supported operating system. There are some
minor variations between each operating system due to the native API of the actual environment, but essentially the
methodology is the same. Note that the use of TMG functions to display images does not preclude the use of other
libraries and/or native calls in the operating environment. The following sub-sections describe in detail how to
display images under each supported operating environment.

The term “operating environment” means the combined operating system and windowing (or display) system in use.
For example the Solaris operating environment is Solaris 2.x running the Common Desktop Environment, which
itself is running on top of Motif and in turn, the X Windows system.

The convention in this manual is that any commands that do not apply to all operating environments list the ones that
they do apply to by listing them in square brackets after the function name. For example:

TMG_display_set_paint_hDC [Windows]

The Windows NT/95/3.1 examples are from real applications using the Microsoft Foundation Class (MFC)
application framework.

In summary the different types of operating environments with respect to display are:

e “Windows” — This is for Windows NT and Windows 95 using DirectDraw. It also applies to Windows 3.1 and
DCI (Display Control Interface — the predecessor of DirectDraw).

e “DOS” — This is for MS-DOS and other MS-DOS lookalike operating systems.
. “X Windows” — This covers the X Windows system that is used for Solaris, LynxOS, VxWorks
e “MAC” — This covers display to the MacOS GUI.

IMAGE DISPLAY UNDER WINDOWS (INCLUDES WINDOWS NT, WINDOWS 95 AND
WINDOWS 3.1)

The TMG library uses the basic Windows calls as well as DirectDraw and some proprietary display methods. The
TMG display functions are designed to make it as easy as possible to display images with a reasonable amount of
flexibility, yet without the learning curve and complications of displaying using the standard Windows calls. Also
the fast DirectDraw method is all handled automatically within the library. Of course experienced Windows
programmers can still use the GDI (Graphical Device Interface) function calls directly.

The basic function groups are as follows:

e TMG display create, TMG display init and TMG display set paint hDC [Windows] are used to initialise the
display. TMG display create would be used once at the start of the program to create a display handle.
TMG display_init would be used to associate a particular Windows 3.1 window with the display handle.
TMG display set paint hDC would be used each time a different device context was provided - for example in
an OnDraw function.

* TMG display set ROI is used to set a region of interest to display to (within a window), and
TMG display image actually displays the image.

* TMG display get parameter can be used to read back certain information about the display such as colour depth
etc.

* TMG display print DIB [Windows] can be used to print a DIB image to the printer in the usual way under
Windows.

The following example code shows how an image would be displayed. The code has been lifted from the example
application “IMV” from the Snapper Windows NT SDK. Please refer to this for more details.

/1 This code resides in inv.cpp.

/1l Create the display handles.

I W. m hDi splay = TM5 di spl ay_create();

I W. m hPrinter TMG di splay_create(); // The printer is a display device.

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 13

/1 This code is frominvview cpp - but sinplified slightly.
/1 This is the standard OnDraw function.
void Cl mvVi ew. : OnDr awm(CDC* pDC)

{

static BOOL bFirstTine = TRUE;

if (bFirstTime == TRUE)

bFirstTi me = FALSE;
if ASL_is_err(TMG display_init(lMW.mhDisplay, GetSafeHand()))

}

. MessageBox (0, “Unsupported Mde.”, “FAILED', MB_(K);

if ((TMG.inage_get _ptr (1 W. m hDI Bl mage, TMG | MAGE_DATA) != NULL) &&

{

(TMG_i mage_get _ptr (| W. m_hDDBI mage, TMG | MAGE_DATA) != NULL))

if (pDC->IsPrinting())

{

}

/1 Set up the dinensions, then print supplying a % scaling paraneter.
TMG_di spl ay_set _paraneter (I MW. m hPrinter, TM5 W DTH,
(ui 16) pDC- >Cet Devi ceCaps(HORZRES)) ;
TMG di spl ay_set _paraneter (I MW. m hPrinter, TMG HEl GHT,
(ui 16) pDC- >Cet Devi ceCaps(VERTRES)) ;
/'l special device context for printer
TMG_di spl ay_set _pai nt _hDC(1 M. m_hPrinter, pDC- >Get Saf eHdc()):;
/1 Print at 85%full size print area:
TMG di splay_print_DIB(I W. m hPrinter, | MW.mhDl Bl mage, 85, TMG RUN);
TMG di spl ay_set _pai nt _hDC(| W. m hPrinter, 0);

else /* Display */

{

switch (m_pD g->m nScal i ngOpti ons)
{
case DLG NO SCALI NG
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, FALSE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, FALSE);
br eak;
case DLG SCALE NO ASPECT:
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, TRUE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, FALSE);
br eak;
case DLG SCALE_KEEP_ASPECT:
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG STRETCH, TRUE);
TMG di spl ay_set _flags(l W. m hDi spl ay, TMG KEEP_ASPECT, TRUE);
br eak;

}

/1 Only need hDC in OnDraw OnPai nt where pDC i s passed in.
TMG_di spl ay_set _pai nt _hDC(1 M. m_hDi spl ay, pDC- >Get Saf eHdc());

swi tch (m_pDi g- >m nDi spl ayDl B)
{
case DLG DI B _DI SPLAY:
TMG di spl ay_i mage(| W. m hDi spl ay, | W. m hDI Bl mrage, TM5 RUN);
br eak;
case DLG DDB DI SPLAY:
TMG di spl ay_i mage(| W. m_hDi spl ay, | W. m hDDBI mage, TM5 RUN);
br eak;
case DLG DI RECT_ DI SPLAY:
if (TMG_di spl ay_get _paraneter (| W. m _hbDi spl ay,
TMG_DI SPLAY_DI RECT_CAPS) == 0)

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 14

{ I/ DirectDraw for WnNT/95, DCl for Wn31
Print ToStatusBar ("A DirectDraw DCl driver is not present");
eResult = ~ASL_CK; /1 Things are not OK

}
el se
{
TMG di spl ay_set _fl ags(l W. m hDi spl ay, TMG DI SPLAY_DI RECT,
TRUE) ;
TMG _di spl ay_i mage(| W. m_hDi spl ay, | M/. m hDDBI mage, TMG RUN);
}

TMG di spl ay_set _flags(l W. m hDi spl ay, TMG DI SPLAY_DI RECT,
FALSE); // Switch off to keep tidy.
br eak;
} /* End switch statenment */
TMG_di spl ay_set _pai nt _hDC(| W. m_hDi spl ay, 0); /* Set back */
} /* End else display */

}

}
The difference between the DIB (device independent bitmap) and DDB (device dependent bitmap) is the format of
the images IMV.m_hDIBImage and IMV.m_hDDBImage. The DIB is a 24 bit file, generated using
TMG image convert to format TMG BGR24 with TMG IS DIB set. The DDB is pixel format that matches that of
the display. For example if the display format (see TMG display get parameter) is TMG RGBI6, then the format
of the DDB will also be TMG RGBI16. For example, the DDB image may have been generated using
TMG image convertto TMG RGBI6. The DDB display method is much faster than the DIB method but
sometimes the final rendered quality is not as good. (This is because the display driver may dither the 24 bit DIB

down to RGB16.) Using DirectDraw is essentially the same as the DDB method except the DirectDraw method is
generally faster.

IMAGE DISPLAY UNDER DOS

To display images under MS-DOS, the Flash Graphics library, by Flashtek Inc. is required. This is a low cost yet
comprehensive graphics library that is royalty free and can be purchased with the SDK. Please contact you local
distributor for information if you do not possess a copy.

The TMG library is a layer above the Flash Graphics library and converts TMG API calls into Flash Graphics
functions calls. Only a small proportion of Flash Graphics routines are available through TMG calls and anyone
seriously programming graphics under DOS should refer to the Flash Graphics manual to see what else is available.

The basic function groups are as follows:
e TMG display create and TMG display_init are used to initialise the display.

e TMG display set ROI is used to set a region of interest to display to, and TMG display image actually displays
the image.

* TMG display get parameter can be used to read back certain information about the display such as colour depth
etc.

The following example code shows how an image would be displayed. The code has been lifted from the example
application “s24dos” from the Snapper SDK. Please refer to this for more details.
Thandl e Hdi spl ay;

Hdi spl ay = TMG di spl ay_create(); /* Create a handle to the screen */

/* Initialise display to 800 by 600 by 65k col ours */
if ASL_is_err(TMG di splay_init(Hdisplay, TM5 800x600x16))
printf(“Failed to initialise display”);

/* Convert to an RGB16 i mage and display */
TMG_i mage_convert (Hvi d_i nage, Hdi spl ay_i mage, TMG RGB16, 0, TMG _RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hdi spl ay_i mage, TMG RUN);

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 15

/* Switch back to the nornal DOS pronpt on exit */
TMG di splay_ini t (Hdi spl ay, TMG DOS_PROWMPT) ;

The Flash Graphics library can be purchased from your local Snapper distributor.

IMAGE DISPLAY UNDER X WINDOWS

The X Window System, based on the X library, is the low level graphics interface used by most Unix type operating
systems. This includes Solaris 2.x, LynxOS and VxWorks.

The TMG library is a layer above the X library and converts TMG API calls into Xlib functions calls. Only a small
proportion of Xlib routines are available through TMG calls and anyone seriously programming graphics under
X Windows should refer to the Xlib Programming Manual.

The basic function groups are as follows:
e TMG display create and TMG display_init are used to initialise the display.

e TMG display set ROI is used to set a region of interest to display to, and TMG display image actually displays
the image.

e TMG display set Xid [X Windows] is used with several different parameters (such as X Window ID) to set up
the display.

* TMG display get parameter can be used to read back certain information about the display such as colour
depth, or number of reserved colours etc.

The following example code shows how an image would be displayed. The code has been lifted from the example
application “Xtmg” from the Snapper LynxOS SDK. Please refer to this for more details.

/* This code would typically go in main() */
Thandl e hDi spl ay;
Thandl e hl mage;

ASL_err_set _reporting(ASL_ERR SET_HANDLER, ASL_err_di spl ay);
hl mage TMG i mage_create();
hDi spl ay TMG di spl ay_create();

/* Connect to X-server to obtain window and di splay information */
pdDi spl ay = XOpenbDi splay(...);

/* Set the X Wndow I D before TMG display_init */
TMG_di spl ay_set _Xi d(hDi spl ay, TMG XI D_W NDOW WW n) ;
/* Initialise the TM5 di splay interface */

TMG di splay_init(hDi splay, TMG X W NDOWS) ;

get _gc(wwWn, &gcView, xfsFont);

XvapW ndow(pdDi spl ay, WWn);

event _| oop();
} /* End main */
The X Windows programming convention uses an event handling loop which branches on user or system events. The

‘update display’ event would be used for display of the image on initial display and whenever the window is moved
or re-sized:

voi d event _| oop(voi d)

{
static int bFirst = TRUE;

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 16

whi | e (TRUE)

XNext Event (pdDi spl ay, &xeReport);
swi t ch(xeReport.type)

{

case Expose:
/*Don't redraw unless this is the |ast contiguous expose */
if (bFirst == FALSE)
{

if (xeReport.xexpose.count != 0)
br eak;

}
bFi r st =FALSE;
/* Draw somet hing */
dwsSt at us = TMG di spl ay_i mage(hDi spl ay, hlnagel, TMG RUN);
br eak;

case ConfigureNotify:

/* W ndow has been noved/re-sized, update any wi ndow size variabl es so

* imm nent redraw takes place correctly
*/
br eak;

case ButtonPress:

case KeyPress:
XUnl oadFont (pdDi spl ay, xf sFont - >fi d);
XFreeGC(pdDi spl ay, gcVi ew) ;
X oseDi spl ay(pdDi spl ay) ;
TMG_di spl ay_destroy(hbDi spl ay) ;
TMG i mage_dest roy(hl magel);
exit(1); /* In this exanple we use keypress to quit */
br eak;

defaul t:
/* Al events selected by StructureNotifyMask except ConfigureNotify
are
* thrown away here since nothing is done with them
*/
br eak;
} /* End switch */
} /* End while */

} /* End Event Loop */

More examples can be found in the demonstration applications available with the Snapper LynxOS SDK.

The following example code shows how an image would be displayed under Solaris and OpenWindows. Although
OpenWindows is no longer marketed by Sun, this example may still be useful.

/* This code would typically go in main() */
Thandl e Hdi spl ay;

i—ldi splay = TMG di spl ay_create();

/* Set up the X Wndows | Ds before TMG display_init */
TMG di spl ay_set _Xi d(Hdi spl ay, TMG XI D_FRAME,

(W ndow) xv_get (Vi ew Basew n->Basewin, XV_XID));
TMG di spl ay_set _Xi d(Hdi spl ay, TMG _XI D_CANVAS,

(W ndow) xv_get (Vi ew_Basew n->Basewi nCanvas, XV_XID));

if (TMG display_init(Hdisplay, TMG X WNDOAS) == ASL_OK) {
if (TMG_di spl ay_get _paraneter (Hdi spl ay, TM5G DEPTH) == 8) {

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 17

XReservedCol ours = (ui 16) TMS di spl ay_get _par anet er (Hdi spl ay,
TMG_RESERVED_COLOURS) ;

fprintf(stderr, “\nDisplay initialised: % free colours found.\n\n",
(int) 256 - XReservedCol ours);

if (XReservedCol ours > 16) {
XReser vedCol ours = 16; /* we wll use at | east 240 col ours */
TMG_di spl ay_set _par anet er (Hdi spl ay, TM5_RESERVED CCOLOURS,
XReser vedCol ours);

}
}
el se
fprintf(stderr, “\nDisplay initialised: 24 bit display.\n\n");

} /* End main */

The X Window ID would typically be set from the repaint routine as shown below:

/*
* Repaint callback function for " Basew nCanvas'.
*/
voi d Basew nRepai nt (Canvas canvas, Xv_w ndow pai nt _w ndow, Display *display,
W ndow xid, Xv_xrectlist *rects)
{

TMG di spl ay_set _Xi d(Hdi spl ay, TMG XI D_W NDOW xi d);

More examples can be found in the demonstration applications available with the Snapper Solaris SDK.

IMAGE DISPLAY UNDER MACOS

The TMG display environment for MacOS uses the QuickDraw or Colour QuickDraw display manager to handle all
display to the screen. Multiple screens are allowed as long as the QuickDraw manager supports it.

For in-depth details on the QuickDraw interface refer to the MacOS Toolbox reference manuals, available online
from Apple or in hardback from bookshops.

The basic function groups are as follows:
e TMG display create and TMG display init are used to create and then initialise the display.
 TMG display set ROI is used to set the location and clipping of an image on the display.

e TMG display set mask is a MacOS-specific function used to set a mask region on the display for use in
overlays.

 TMG display get parameter can be used to read back certain information about the display such as colour or
grey scale display, pixel depth and pixel format.

¢ The following example code shows how an image would be displayed. The code has been lifted from the
example application “gui.c” from the Snapper SDK application example code. Please refer to this for more
details.

struct QU {.... .} qui;
struct QU * psQui;

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 18

/*

This code would typically go in main() */

voi d mai n(voi d)

{

}
/*

ui

{

Terr teStatus = ASL_CK;
Pi xMapHandl e hpnPl ayThr u;
char TenpString[MAX_FI ELD LENGTH] ;

InitGaf(&qd.thePort);

I nitFonts();

I nitWndows(); /* Loads the w ndow resource */

I ni t Menus(); /* Loads the menu resource */

TEInit(); /* Text-editor init - needed for window title display

apparently */

InitDialogs(nil); /* Needed for systemalert nessage box & other stuff-
apparently */

InitCursor();

[* Set up systemnmenu entry for our window - '"QUIT is the only entry. */
psCGui - >hMenuBar = Get MenuBar (mrngMBar);

Set MenuBar (psQui - >hMenuBar) ;

Dr awiVenuBar () ;

/* Make a new wi ndow for drawing in, and it must be a col or w ndow.

* The display can be sized to the wi ndow size |ater.

*/

strcpy(TenpString, psGui->szWnNane);

psGui - >pW n = NewCW ndow(nil, &psQui->w ndRect, c2pstr(TenpString), true,
noG owDocProc, (WndowPtr) -1, true, 0);

/* set window to current graf port */
Set Port (psQui->pWn);

psCGui - >hDi spl ay = TMG di spl ay_create();
i f(psCGui->hDisplay == TM5_ | NVALI D_HANDLE)
TMG err_ret(ASL_ERROR, "Failed to acquire display ", 0, szFnNane);

/[* Cbtain a valid PixMapW ndow to display with */
hpnPl ayThru = Get W ndowPort (psCQui ->pWn)->portPi xMap;

/[* Initialise display with Pi xMapW ndow */

teStatus = TMs di splay_init(psQui->hDisplay, hpnPlayThru);

psCGui - >wDi spl ayFormat = TMG di spl ay_get _paraneter(psCGui - >hDi spl ay,
TMG_PI XEL_FORNAT) ;

psCGui - >wDi spl ayDept h = TMG di spl ay_get _paraneter(psCui - >hDi spl ay,
TMG_DEPTH) ;

/* Set QuickDraw font size */
Text Si ze(8);

Event Loop() ;

/* End main */

The event | oop consists of nunerous events which nust be detected and
handl ed, the one of interest is the redraw event..*/

32 EventLoop (void)

Terr teStatus = ASL_CK;

/* Mac variables */

Event Record evEvent;
W ndowPt r wWW ndow;

TMG Programmer’s Manual v4.0.1 Image Display Functions and Examples 19

/* Check for any user input - ie nobuse or keystrokes.

* Set kSleep to O for imediate return if no message waiting — returns
* FALSE & NULL event.

* However value of O fails to allow the OS to do background processing -
* VERY inportant for MacOS - nasty side effects otherw se!.

*/

while ((seCurrentEvent.dwCnd) !'="'Q &&
Wi t Next Event (everyEvent, &evEvent, /*kSleep*/ 1, nil) == true &&
('ASL_is_err(teStatus)))

{

switch (evEvent.what)
{
case null Event:/* No nmessage found so break out should be caused by
* Wit Next Event returning 'false' on null Event.
*/
case updateEvt:/* |If the nmessage is telling us that it is our w ndow
* needi ng the update.
*/
if ((ps@ui->pWn !'= NULL) &&
((WndowPtr) evEvent . nessage == (W ndowPtr)psQui->pWn))

{
Begi nUpdat e(psQui - >pWn) ;
[* redisplay */
TMG i mage_di spl ay(psQui - >hl mage);
EndUpdat e(psCui - >pW n) ;

}

br eak;

defaul t:
br eak;

} /* End switch statenent */
} /* End while */
return;

}

TMG Programmer’s Manual v4.0.1 Sample Applications 20

Sample Applications

This section contains either example applications or major code fragments that show how to use key areas of the
TMG library.

All the examples shown have been extracted from real examples provided with the Snapper SDK. There are
additional (more detailed) example applications in the SDK and it is strongly recommended that these are referred to
before embarking on application development. The Windows NT/95/3.1 examples are from real applications using
the Microsoft Foundation Class (MFC) application framework.

A SIMPLE TMG PROCESSING EXAMPLE

This example shows the basic operation of the TMG library. This program reads in a TIFF file (or in fact any
supported file format), mirrors it and then writes it out as a TIFF file. The file contains a compiler pre-processor
directive PROCESS IN 1 STRIP to determine whether to process the image in one strip or strips of 8 lines at a
time. This example is from the file “process.c”:

#i ncl ude <asl _inc. h>

voi d mai n(ui 16 argc, char** argv)
{
Thandl e Hi n_i mage, Hout _i mage;
ui 16 strip, total _strips;
ui32 lines_this_strip = 8;

printf("\nTM5 | mage Processing Exanple - v3.0\n");
printf("Usage : process <input_filename> <output_fil ename>\n");

H n_i mage = TMG_ i mage_create();

Hout _i mage = TMG_ i nage_create();

TMG i mage_set _infil enane(Hi n_i mage, argv[1]);
TMG i mage_set _outfil ename(H n_i mage, argv[2]);

#i fdef _PROCESS_IN 1_STRIP
/* Note generally only 32 bit applications can process the image in */
/[* 1 strip because of nenory limtations / cache benefit */
TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S _STRI P, TMG AUTO_HEI GHT) ;
total _strips = 1;
#el se /* Multiple strips */
/* Check that input file exists, and deternmine its size */
TMG i mage_set _paraneter (H n_i nage, TMG LINES TH S STRIP, 0);
if (TMG.i nmage_read(Hi n_i mage, NULL, TMG RUN) != ASL_OK) {
printf("Failed to open file %\n", argv[1]);
exit(0);
}
TMG i mage_read(H n_i mage, NULL, TMG RESET);
TMG i mage_set _paraneter (H n_i nage, TMG LINES THI S STRIP, lines_this_strip);
total _strips = (uil1l6) TMG.inmmge_cal c_total _strips(Hi n_imge);
#endi f [* multiple strips */

for (strip = 0; strip < total _strips; strip++) {
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMG RUN);
TMG I P_mirror_i mage(H n_i mage, Hout _i nage, TMG RUN);
TMG i mage_write(Hout _i mage, TMG NULL, TMG TIFF, TMG RUN);
}
TMG i mage_dest roy(TMG_ALL_HANDLES) ; /* Free the menory */
}

TMG Programmer’s Manual v4.0.1 Sample Applications 21

TEST PATTERN GENERATION

This example shows how to generate an image “from scratch” - in this case a grayscale ramp, and save it as a TIFF
file. Note this example also illustrates how individual pixels may be accessed and modified, hence allowing image
processing operations from a user application. This example is from the file “pgen.c”:

#i ncl ude <asl _inc. h>
voi d main(ui 16 argc, char** argv)

Thandl e Hi mage;

ui 32 hei ght, width;
ui 32 line, pixel;
ui 8 *Pdata;

printf("\nTIFF File Pattern Generator - v3.0\n");

/* Create an image */
H mage = TMG i nage_create();
TMG i mage_set _outfil ename(H mage, "pattern.tif");

/[* OK lets nake an image */

w dth = 256;

hei ght = 256;

TMG i mage_set _par anet er (H nage, TMG W DTH, wi dth);

TMG i mage_set _par anet er (H nage, TMG HElI GHT, height);

TMG i mage_set _par anet er (H nage, TMG Pl XEL_FORMAT, TM5 Y8);
TMG i mage_set _paranet er (H nage, TMG LINES TH S STRI P, height);

if (TMG_i mage_check(H mage) !'= ASL_OK) /* Fills in bytes_per_line */
{

printf("PGEN: Corrupt image\n");

exit(0);
}

/* This is an internal function that conveniently allocates a strip
* of image data based on lines_this_strip and bytes_per_line. */
if (TMG.image_malloc_a_strip(H mage) != ASL_CK)

{
printf("Failed to malloc sufficient menory\n");
exit(0);
}
Pdata = (ui 8*) TMG.i mage_get _ptr(H mage, TMG | MAGE_DATA);
/* Lets put a ranmp pattern in the image */
for (line = 0; line < height; |ine++)
for (pixel = 0; pixel < wdth; pixel++)

{
}

TMG i mage_write(H mage, NULL, TMG TIFF, TMG RUN);

*Pdat a++ = pi xel % 256;

TMG i mage_destroy(TM5G ALL_HANDLES); /* Free the menory */

SOFTWARE JPEG DECOMPRESSION AND DISPLAY

This example shows how to use the TMG JPEG decompression functions to read in a JPEG file and display it. The
input JPEG file is decompressed and displayed 8 lines at a time. This example is from the file “jview.c”:

TMG Programmer’s Manual v4.0.1 Sample Applications

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e H peg_i nage, Htenp_i mage, Hdi sp_i mage;

Thandl e Hdi spl ay;

ui 16 strip, total _strips;

printf("\nJPEG | mage Viewer - v3.0\n");

/* Create inmmage structures */

Hdi spl ay = TMG di splay_create(); /* create a handle to the screen */

H peg_i mage = TM5 JPEG i mage_create();

Ht enp_i nage = TMG_ i mage_create();

Hdi sp_i nage = TMG_ i mage_create();

TMG i mage_set _infil enane(H peg_i mage, argv[1]]);

if (TMG_JPEG file_read(H peg_image) != ASL_OK) {
printf("Failed to read in JPEG file\n");
exit(0);

}

if (ASL_is_err(TMG display_init(Hdisplay, TM5G 800x600x16))) {
printf("\nFailed to initialise VESA graphics card\n\n");
exit(1);

}

TMG_ i mage_set _paranet er (H peg_i mage, TMG LINES THI S_STRI P, 8);

total _strips = (uil1l6) TMS image_cal c_total _strips(H peg_i mage);

for (strip = 0; strip < total _strips; strip++) {
TMG_JPEG deconpress(H peg_i mage, Htenp_i nage, TMG _RUN);
TMG_ i mage_convert (Ht enp_i mage, Hdi sp_i mage, TM5 RGB16, 0, TM5 RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hdi sp_i mage, TMG RUN);

}

/[* return to the DOS pronpt */

TMG di spl ay_i nit (Hdi spl ay, TMG DOS PROWPT) ;

/* Free the nenory used by the images */

TMG i mage_dest roy(TM5_ALL_HANDLES) ;

}

SOFTWARE JPEG COMPRESSION

This example shows how to use the TMG JPEG functions to compress a TIFF file (or in fact any supported file
format). The input file is read in (the whole image) then compressed 8 lines at a time to conserve memory, before
being saved as a JPEG file. This example is from the file “compsw.c”.

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e Hi n_i mage, H peg_i mage; /* input and output images */

H n_i mage = TMG_ i mage_create();
H peg_i mage = TM5 JPEG i mage_create();

TMG i mage_set _infil enane(Hin_i mage, “in.tif”);
TMG i mage_set _outfil enanme(H n_i mage, “out.jpg”);

TMG Programmer’s Manual v4.0.1 Sample Applications 23

TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S STRIP, 8);

TMG JPEG set _Qual ity_factor(H peg_i mage, 32);

TMG_JPEG conpress_i mage_to_i mage(H n_i mage, H peg_i mage, TMS FI LE,
TMG_FI LE) ;

TMG i mage_dest roy(TM5_ALL_HANDLES) ;

CONVERTING A 24 BIT COLOUR IMAGE TO A PALETTED IMAGE

This example shows how use the TMG cmap functions to generate an optimum colour palette and use it to convert a
24 bit colour image to an 8 bit paletted one. (Note that if the image is processed in strips, as in this example, two
passes are effectively needed). This example is from the file “cmap.c”:

#i ncl ude <asl _inc. h>

voi d main(ui 16 argc, char** argv)

{

Thandl e Hi n_i mage, Hout _i mage;
ui 16 strip, total _strips;
ui32 lines_this_strip = 8;

printf("\nTMG Col ourmap/ Pal ette Generation Exanple - v3.0\n");

/* create the inmages */

H n_i mage = TMG_ i mage_create();

Hout _i mage = TMG_ i nage_create();

TMG i mage_set _infil enane(Hi n_i mage, argv[1]);
TMG i mage_set _outfil ename(H n_i mage, argv[2]);

/* work out the height and nunber of strips */
TMG i mage_set _paraneter (H n_i mage, TMG LINES TH S STRIP, 0);
if (TMG.inmage_read(Hi n_i mage, NULL, TMG RUN) != ASL_OK) {
printf("Failed to open file %\n", argv[1]);
exit(0);
}
TMG i mage_read(H n_i mage, NULL, TMG RESET);
TMG i mage_set _paraneter (H n_i nage, TMG LINES THI S STRIP, lines_this_strip);
total _strips = (uil1l6) TMS.inmage_cal c_total _strips(Hi n_imge);

printf("Generating palette");

for (strip = 0; strip < total_strips; strip++)

{
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMG RUN);
TMG _cnmap_gener at e(Hi n_i mage, 256, TMG RUN);

}

printf("\nMapping image to palette");
for (strip = 0; strip < total_strips; strip++)

{
TMG i mage_r ead(Hi n_i mage, TMG NULL, TMS RUN);
TMG i mage_convert (Hi n_i mage, Hout _i mage, TMG PALETTED, 0, TM5 RUN);
TMG i mage_write(Hout _i mage, TMG NULL, TMG TIFF, TMG RUN);

}

printf("conplete\n");

/* Free the nmenory */
TMG i mage_dest roy(TM5_ALL_HANDLES) ;

TMG Programmer’s Manual v4.0.1 Sample Applications 24

DISPLAYING COLOUR AND GRAYSCALE IMAGES SIMULTANEOUSLY TO A PALETTED DISPLAY

This example code fragment shows how use the TMG cmap functions to set up the palette so that a colour and
grayscale image can be displayed simultaneously with reasonable quality. The trick here is to generate a palette that
has a sufficient mix of grayscale tones and colours. The first example uses an equal spread of colours and the second
example generates an optimum palette based on an acquired video image, having already reserved standard VGA
colours and a selection of grayscales.

/* Set up the col ourmap */
TMG cnmap_set _type(Hyuv_i mage, TMG 332_RGB); /* even spread of colours */

/* add standard VGA col ours */
TMG cnap_set _type(Hyuv_i mage, TMG VGAL6);
TMG_ i nage_set _par anet er (Hyuv_i nage, TMG CVAP_SI ZE, 256);

/* now set sone additional grayscales */

TMG _cnmap_set _RGB_col our (Hyuv_i nage, 16, 32, 32, 32);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 17, 48, 48, 48);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 18, 64, 64, 64);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 19, 80, 80, 80);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 20, 96, 96, 96);
TMG cmap_set _RGB _col our (Hyuv_i mage, 21, 112, 112, 112);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 22, 128, 128, 128);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 23, 144, 144, 144);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 24, 160, 160, 160);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 25, 176, 176, 176);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 26, 192, 192, 192);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 27, 208, 208, 208);
TMG cnap_set _RGB _col our (Hyuv_i nage, 28, 224, 224, 224);
TMG cnmap_set _RGB_col our (Hyuv_i nage, 29, 240, 240, 240);

/* put the colourmap into the display palette */
TMG di spl ay_cmap_i nstal | (Hdi spl ayl, Hyuv_i mage);

/* display the palette - just for interest */
TMG_di spl ay_cmap(Hdi spl ayl, Hyuv_i mage, TM5 RUN);

/* now generate our YUV to paletted LUT for displaying col our inmages

* captured from Snapper-16. Note this will take several seconds,
* or we could load a previously saved one.
*/

#i fdef _SAVE LUT

TMG i mage_conv_LUT_gener at e(Hyuv_i nage, TM5 YUV422_TO PALETTED_LUT);

TMG i mage_conv_LUT_save(Hyuv_i nage, TM5 YUV422_TO PALETTED_LUT,
"convl ut. bin");

#el se

TMG i mage_conv_LUT_| oad(Hyuv_i nage, TM5 YUV422_TO PALETTED_ LUT,
"convl ut. bin");

#endi f

/* and the same for the grayscale images... */
TMG _cmap_copy(Hyuv_i mage, Hy8 image); /* give Hy8 the same col ourmap */
TMG_ i mage_conv_LUT_generat e(Hy8_i nage, TM5 Y8_TO PALETTED LUT);

This second example is basically the same, except an optimum palette is generated. When generating an optimum
palette, the image used as the reference image to generate the palette must contain a good mix of all the colours that
can be expected in the live application situation.

/* enter standard VGA col ours */
TMG cnap_set _type(Hyuv_i mage, TMG VGALS);

TMG Programmer’s Manual v4.0.1 Sample Applications

25

TMG_ i nage_set _par anet er (Hyuv_i nage, TMs CMAP_SI ZE, 30);

/* now set sone additional grayscales */

TMG _cmap_set _RGB_col our (Hyuv_i nage, 16, 32, 32, 32);
TMG cnmap_set _RGB_col our (Hyuv_i nage, 17, 48, 48, 48);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 18, 64, 64, 64);
TMG _cnmap_set _RGB_col our (Hyuv_i nage, 19, 80, 80, 80);
TMG _cmap_set _RGB_col our (Hyuv_i nage, 20, 96, 96, 96);
TMG cnmap_set _RGB _col our (Hyuv_i nage, 21, 112, 112, 112);
TMG _cnmap_set _RGB _col our (Hyuv_i nage, 22, 128, 128, 128);
TMG cnmap_set _RGB _col our (Hyuv_i nage, 23, 144, 144, 144);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 24, 160, 160, 160);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 25, 176, 176, 176);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 26, 192, 192, 192);
TMG _cnap_set _RGB_col our (Hyuv_i nage, 27, 208, 208, 208);
TMG _cnap_set _RGB _col our (Hyuv_i nage, 28, 224, 224, 224);
TMG cnap_set _RGB _col our (Hyuv_i nage, 29, 240, 240, 240);

/* grab a reference col our inmage */
SNP16_set _i nput _node(Hsnpl6, input_node);
SNP16_set _format (Hsnpl6, SNP16_FORMAT_YUV422, TMG YUV422);

/* some extra captures to allow colour lock to settle */
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);
SNP16_capt ure(Hsnpl6); SNP16_capt ure(Hsnpl6);

for (strip = 0; strip < total _strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hyuv_i mage, TMG RUN);
TMG i mage_convert (Hyuv_i mage, Hi magel, TMG RGB24, 0, TMG RUN);

/* generate an optimum palette - not using the reserved
* colours already in the colourmap. The resultant

* col ourmap shall be 256 col ours.

*/

}
TMG_cmap_copy(H nagel, Hyuv_i mage);
TMG_cmap_copy(Hyuv_i mage, Hy8_i mage);

TMG _cmap_gener at e(H magel, 256, TMG RUN); /* 256 colours in total

/* Force display routines to regenerate new LUTs */
TMG_ i mage_conv_LUT_destroy(TMG_YUv422_TO PALETTED LUT);
TMG i mage_conv_LUT_destroy(TMG Y8 _TO PALETTED LUT);

/* now wite the colourmap into the display hardware */
TMG di spl ay_cmap_i nstal | (Hdi spl ayl, Hyuv_i mage);

TMG di spl ay_cmap(Hdi spl ayl, Hyuv_image, TMG RUN); /* for interest

LOOK UP TABLE EXAMPLES - USING TMG LUT FUNCTIONS

The first code fragment shows how the TMG LUT functions may be used within an application to vary the

brightness, contrast, gamma or colour balance of a colour image prior to displaying it.

Thandl e hLUT;

i 16 Brightness = TMG DEFAULT_BRI GHTNESS;
i 16 Contrast = TMG DEFAULT_CONTRAST;

i16 Ganma = TMG _DEFAULT _GAMVA;

i16 Ri = TMG DEFAULT_I NTENSITY;
i16 G = TMG DEFAULT_I NTENSITY;
i16 Bi = TMG DEFAULT_I NTENSITY;

hLUT = TMG LUT create();

TMG Programmer’s Manual v4.0.1 Sample Applications 26

/* set up default paraneters in hLUT */
TMG_LUT _gener at e(hLUT, brightness, contrast, gamm, ri, gi, bi);

/* we may vary the LUT paraneters here... */

/* apply the software LUT function */
TMG _LUT _appl y(H nmagel, H mage2, hLUT, TMG RUN);

/* now display the result of the LUT operation */
TMG_di spl ay_i mage(Hdi spl ay, H nage2, TMG RUN);

The following example is a code fragment that uses the TMG LUT functions to generate LUTs that are subsequently
used to program hardware LUTSs contained in image acquisition hardware:

/1 Set up the hardware LUTs - using TM5 LUT functions to generate them
/'l (The parameters have been set by sliders via the application GU)
TMG_LUT_gener at e(S24. m hLut, S24.m pLut DI g->m nBri ght nessLevel,

S24. m pLut Dl g- >m nCont r ast Level ,

S24. m pLut Dl g- >m nGammalLevel ,

S24. m pLut DI g- >m nRedl Level ,

S24. m pLut Dl g- >m nGreenl Level ,

S24. m pLut Dl g- >m nBl uel Level);

/1 Now extract pointers to the actual data

pLut Red = (ui 8) TM5 LUT_get _ptr(S24. m hLut, TMG RED);
pLut Green = (ui 8%) TMG LUT _get_ptr(S24. m hLut, TMG GREEN);
pLutBlue = (ui8*) TMG LUT_get_ptr(S24. m hLut, TMS BLUE);

/1 Set the hardware LUTs in Snhapper-24

SNP24_set _LUTs(S24. m hSnapper, SNP24_LUT_SET, SNP24_252 RED, plLut Red);
SNP24_set _LUTs(S24. m_hSnapper, SNP24_LUT_SET, SNP24_252 GRN, pLut Geen);
SNP24_set _LUTsS(S24. m hSnapper, SNP24_LUT_SET, SNP24_252 BLU, pLutBl ue);

CHROMA KEYING

This example shows how to use the chroma keying functions. It shows how to calibrate to a chroma screen and then
key in a background colour. This example is from the file “chroma.c” and assumes the use of the Snapper-16 video
acquisition module:

/* This code fragment shows how to calibrate the background (screen) */
SNP16_capt ur e(Hsnp16) ;
for (strip = 0; strip < total _strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hvid_i mage, TMG RUN);
TMG _CK cal i brate(Hvid_i mage, Hchroma_key, TMG RUN);
}
key_colour = TMG GREEN, /* key to green */

This next code fragment is the inner part of the capture and display loop, using Snapper-16:

SNP16_capt ur e(Hsnp16) ;
for (strip = 0; strip < total _strips; strip++) {
SNP16_read_vi deo_dat a(Hsnp16, Hvid_i mage, TMG RUN);
if ((key_to_ref_inmage == TRUE) && (chronma_keying == TRUE)) {
#i fdef _DOS16 /* nust read fromdisk */
TMG_ i mage_set _paraneter (H nage3, TMSG LINES THI S STRIP, |ines_per_strip);
TMG i mage_set _infil enane(Hi mage3, ref _image_fil enane);

TMG Programmer’s Manual v4.0.1 Sample Applications 27

TMG i mage_r ead(Hi mage3, TMG NULL, TMG RUN);

TMG i mage_convert _to_YUV422(H nage3, H maged4, TMG YUv422, 0, TMG RUN);
#else [* 32 bit */

TMG i mage_set _paraneter (Href _i mnage, TM5 LINES TH S_STRI P,

i nes_per_strip);

TMG i mage_r ead(Href _i mage, Hi nmage4, TM5 RUN);
#endi f

TMG_CK _chroma_key(Hvi d_i mage, Hi magel, Hi mage4, key_col our, Hchrona_key,

filter, TMG RUN);

}
else if ((key_to_ref_imge == FALSE) && (chroma_keyi ng == TRUE))
TMG _CK _chroma_key(Hvi d_i mage, Hi magel, TMG NULL, key_col our,
Hchroma_key, filter, TM5G RUN);
el se
TMG i nage_nove(Hvi d_i mage, Hi magel);

TMG i mage_convert (Hi magel, Hi nmage2, TM5 RGB16, TM5 USE LUT, TMG RUN);
TMG_di spl ay_i mage(Hdi spl ay, Hi mage2, TMG RUN);

}
TMG i nage_set _paraneter (Hvid_i nage, TM5G LINES THIS STRIP, |ines_per_strip);

TMG Programmer’s Manual v4.0.1

Function List

28

Function List

This section groups the TMG functions logically. Each function described in detail alphabetically in the next

section.

GENERAL PURPOSE FUNCTIONS

TMG image_create
TMG image_destroy

TMG image copy
TMG image_move
TMG image_is colour

TMG image check
TMG image calc total strips
TMG image find file format

TMG image malloc_a_strip
TMG image_free data

TMG image get flags

TMG image_get parameter
TMG image_get ptr

TMG image get infilename,
TMG image get outfilename

TMG image set flags

TMG image_set parameter
TMG image_set ptr

TMG image_set_infilename,
TMG image_set outfilename

PIXEL FORMAT CONVERSION FUNCTIONS (AND RELATED)

TMG image_convert

TMG image _conv LUT generate
TMG image conv LUT destroy
TMG image conv LUT load

TMG image conv LUT save

IMAGE READING AND WRITING FUNCTIONS

TMG image read
TMG image_ write

COLOURMAP/PALETTE RELATED FUNCTIONS

TMG cmap_copy

TMG cmap_find closest colour
TMG cmap_generate

TMG cmap_get occurrences
TMG cmap_get RGB colour
TMG cmap_is grayscale

TMG cmap_set colour

TMG cmap _set RGB_colour
TMG cmap_set type

TMG Programmer’s Manual v4.0.1 Function List 29

IMAGE PROCESSING FUNCTIONS

TMG IP crop

TMG _IP extract region

TMG IP filter 3x3

TMG IP generate_averages
TMG IP_histogram_clear
TMG IP_histogram_filter

TMG IP_histogram generate
TMG IP_histogram match
TMG IP pixel rep

TMG IP mirror_image

TMG _IP rotate_image

TMG IP subsample

TMG IP_threshold grayscale

SPECIAL PROCESSING FUNCTIONS

TMG SPL 2fields to frame

TMG SPL Data32 to Y8

TMG SPL field to frame

TMG SPL HSI to RGB pseudo colour

TMG SPL YUV422 to RGB pseudo colour
TMG SPL XXXX32 to Y8

JPEG RELATED FUNCTIONS

TMG JPEG image create
TMG JPEG set image
TMG JPEG build image

TMG JPEG buffer read
TMG JPEG buffer write

TMG JPEG file open
TMG JPEG file close

TMG JPEG file read
TMG JPEG file write

TMG JPEG sequence build

TMG JPEG sequence calc_length

TMG JPEG sequence set start frame
TMG JPEG sequence extract frame

TMG JPEG compress_image_to_image
TMG JPEG compress

TMG JPEG decompress_image to image
TMG JPEG decompress

TMG JPEG set Quality factor

TMG JPEG set Quantization_factor

CHROMA KEYING AND RELATED FUNCTIONS

TMG CK create

TMG CK destroy

TMG CK chroma_key
TMG CK calibrate

TMG CK set parameter
TMG CK get parameter

TMG Programmer’s Manual v4.0.1 Function List 30

TMG CK get YUV values,

TMG CK get YUV values RGB

TMG CK generate UV to _hue LUT
TMG _CK destroy UV to_hue LUT

LOOK UP TABLE (LUT) FUNCTIONS

TMG LUT create
TMG _LUT destroy
TMG LUT apply
TMG LUT generate
TMG LUT get ptr

GENERIC DISPLAY FUNCTIONS

TMG display create

TMG display destroy

TMG display get flags

TMG display get parameter
TMG display get ROI

TMG display set flags

TMG display set parameter
TMG display set ROI

WINDOWS NT, 95 & 3.1 SPECIFIC DISPLAY (AND PRINTING) FUNCTIONS:

TMG display init

TMG display image

TMG display direct w3l [Windows 3.1]
TMG display set hWnd [Windows]

TMG display set paint hDC [Windows]
TMG display get hWnd [Windows]
TMG display get paint hDC [Windows]
TMG display print DIB [Windows]

DOS SPECIFIC DISPLAY FUNCTIONS:

TMG display_init

TMG display image

TMG display clear [X Windows, DOS]

TMG display box fill [DOS]

TMG display _draw_text [DOS]

TMG display cmap [DOS]

TMG display cmap_install [X Windows, DOS]
TMG display set font [DOS]

X WINDOWS SPECIFIC DISPLAY FUNCTIONS:

TMG display init

TMG display image

TMG display clear [X Windows, DOS]

TMG display cmap_install [X Windows, DOS]
TMG display set Xid [X Windows]

TMG Programmer’s Manual v4.0.1 Function List 31

MacOS SPECIFIC DISPLAY FUNCTIONS:

TMG display init
TMG display image
TMG display set mask [MAC]

The functions are described in alphabetical order in the following pages.

TMG Programmer’s Manual v4.0.1 Function List 32

THIS PAGE IS INTENTIONALLY BLANK

TMG Programmer’s Manual v4.0.1 TMG_CK calibrate

33

TMG_CK calibrate

USAGE
Terr TMG _CK calibrate(Thandle Hin_image, Thandle Hchroma key, uil6 TMG action)

ARGUMENTS

Hin_image Handle to the input image.
Hchroma_key Handle to a chroma keying structure.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be

aborted.

DESCRIPTION

This function generates suitable values for the chroma keying structure, referenced by Hchroma_key. 1t finds

the average hue and luminance of the image and assigns it to the chroma keying structure.

To use this function, remove all subject material from in front of the chroma screen and capture an image. It

is very important that the chroma screen fills the whole image and that nothing else is in the view of the
camera. Also suitable lighting must be used - for example tungsten studio lights or diffused daylight.

Fluorescent lights will not work.

The hue tolerance is set to 20 degrees and the luminance tolerance set to 64. (This means + 20 and + 64

respectively.)

Note that this function may well be useful for applications simply requiring the average luminance or hue in
an image (and not needing any chroma keying functionality). 7MG CK get parameter can be used to read

the actual settings generated.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following example shows how to find the average brightness and hue in a colour image:

Thandl e hChr omaKey;
Thandl e hl mage, hYUVI mage;

hChr omaKey = TMG CK create();
hl mage = TMG_ i nage_create();
hYUVI mage = TMG i mage_create();

/* sky.tif is a 24 bit RG col our image */

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG_ i mage_set _par anet er (hl mage, TMG _HElI GHT, TMS_AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG i mage_convert (hl mage, hYWVI mage, TMG YWv422, 0, TMG RUN);
TMG _CK cal i brat e(hYUVI mage, hChr omaKey, TM5 RUN);

/* now we can read the average brightness and hue (if we want)*/
Aver ageLuma = (ui 16) TMG CK _get _par anet er (hChr omaKey, TMG LUMA);
Aver ageHue = (ui 16) TMG _CK get _paranet er (hChr omaKey, TMG HUE);

See also the extended examples in the “Sample Applications” section.

TMG Programmer’s Manual v4.0.1 TMG_CK calibrate 34

BUGS / NOTES
Hin_image must be a 16 bit YUV 4:2:2 image (TMG _YUV422).

SEE ALSO
TMG _CK create, TMG CK get parameter.

TMG Programmer’s Manual v4.0.1 TMG_CK chroma_key 35

TMG_CK_chroma_key

USAGE

Terr TMG _CK chroma_key(Thandle Hin_image, Thandle Hout image, Thandle Href image, uil6 colour,
Thandle Hchroma_key, uil6 filter, uil6 TMG action)

ARGUMENTS

Hin_image Handle to the input image.
Hout image Handle to the output image.
Href image Handle to an image to key to (or TMG NULL)

colour The colour to key to.
Hchroma key Handle to a chroma keying structure.
filter Either TRUE or FALSE - selects horizontal filtering.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function performs chroma keying on the input image, Hin_image, and generates a chroma keyed output
image, Hout image. If Href image is TMG _NULL, then the function will key to the colour defined by
colour. colour can be one of TMG RED, TMG GREEN etc - see TMG cmap_set _colour for a complete list
of available colours.

The chroma keying structure, reference by Hchroma_key, contains information about the hue (angle), hue
tolerance, luminance and luminance tolerance. For each pixel in the input image, if its hue and luminance are
within the limits defined by Hchroma_key, the key colour (or reference image if defined) will be used,
otherwise the input image will be used to generate the output image.

The image type for the input image and optional reference image must be TMG YUV422. Also the reference
must be the same size (in terms of width and height) as the input image. TMG_image convert (to
TMG YUV422) can be used to generate a reference image from a 24 bit RGB image if required.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES
Hin_image and Href image (if used) must both be a 16 bit YUV 4:2:2 image (TMG _YUV422).

SEE ALSO
TMG CK create, TMG CK calibrate, TMG CK set parameter.

TMG Programmer’s Manual v4.0.1 TMG_CK create 36

TMG_CK _create

USAGE
Terr TMG _CK create()

ARGUMENTS

None.

DESCRIPTION

This function creates a Tchroma_key structure by the use of malloc, and returns a handle to the structure. The
contents of the chroma keying structure is shown below along with their default initialization values. (Refer
to the file “tmg.h” for the actual structure definition.)

ui 16 hue = 340; /* typical blue chroma screen hue */
ui 16 hue_tol = 20; /* +/- 20 degrees */
ui 16 luma = 120; /* suitable | um nance val ue and tol erance */

ui 16 luma_tol = 64;

The handle to this structure is used by the chroma keying functions.

RETURNS

On success a valid handle is returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates a chroma keying structure and gets a handle to it:
Thandl e hChr omaKey;

if (ASL_is_err(hChromaKey = TMG CK create())
printf(“Failed to create LUT");

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG CK destroy, TMG CK chroma_key, TMG CK set parameter.

TMG Programmer’s Manual v4.0.1 TMG_CK _destroy 37

TMG_CK_destroy

USAGE
Terr TMG CK destroy(Thandle Hchroma_key)

ARGUMENTS
Hchroma key Handle to a chroma keying structure or TMG ALL HANDLES.

DESCRIPTION

This function destroys a chroma keying structure by freeing all the memory associated with that structure.

If the parameter TMG ALL HANDLES is used, all previously created chroma keying structures are destroyed
and their associated handles freed.

TMG image destroy(TMG ALL HANDLES) will destroy all TMG chroma keying structures by calling
TMG CK destroy for all chroma key handles. This is a convenient way of destroying everything with just
one function call.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys a previously created chroma keying structure:
Thandl e hChr omaKey;

/* destroy the chroma keying structure */
TMG_CK_dest r oy(hChr onaKey) ;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG CK create, TMG image destroy.

TMG Programmer’s Manual v4.0.1 TMG_CK destroy UV_to hue LUT 38

TMG_CK _destroy UV_to_hue_ LUT

USAGE
Terr TMG CK destroy UV to _hue LUT()

ARGUMENTS

None

DESCRIPTION

This function destroys the UV to hue LUT previously generated using the function
TMG CK generate UV to _hue LUT

TMG image destroy(TMG ALL HANDLES) destroys all TMG structures including this UV to hue LUT and
may therefore be a more convenient way of destroying this LUT.

Note that this LUT is not related to the TMG_LUT suite of functions or the TMG image conversion LUTs.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys the UV to LUT structure:

/* destroy the W to hue LUT */
TMG_CK destroy_UV_to_hue_ LUT();

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG CK generate UV to_hue LUT, TMG image destroy.

TMG Programmer’s Manual v4.0.1 TMG_CK generate UV _to hue LUT 39

TMG_CK _generate_UV_to_hue_LUT

USAGE
Terr TMG _CK generate_ UV to_hue LUT()

ARGUMENTS

None

DESCRIPTION

This function generates a LUT to convert from UV (i.e. the colour components of a YUV 4:2:2 image) to hue
(i.e. the angle representing the colour). This LUT is used by the functions TMG CK chroma_key and

TMG CK calibrate. If the LUT is not generated when these functions are called, it is automatically
generated. This function is sometimes useful to generate the LUT in advance of actually using it (so as to
save time).

The memory used by the LUT is dynamically allocated when the LUT is generated.
Note that this LUT is not related to the TMG_LUT suite of functions or the TMG image conversion LUTs.

TMG CK destroy UV to_hue LUT can be used to destroy this LUT (i.e. free the allocated memory), but
TMG image_destroy(TMG _ALL HANDLES) will automatically destroy all TMG structures including this
LUT.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment generates the UV to hue conversion LUT:

/* Generate the LUT */
if (ASL_is_err(TM5 CK generate_WV_to_hue_LUT()))
printf(“Failed to generate LUT");

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

The LUT size is 64K words (16 bit words) under all operating systems, except that under Windows 3.1, the
LUT size is 64K bytes, which limits the hue resolution of the output to two degrees instead of one.

There are no known bugs.

SEE ALSO

TMG image_convert, TMG image conv LUT destroy, TMG image conv LUT save,
TMG image _conv LUT load.

TMG Programmer’s Manual v4.0.1 TMG_CK get component 40

TMG_CK_get_component

USAGE
Terr TMG _CK_get component(uil6 colour, uil6 component)

ARGUMENTS
colour Colour (e.g. TMG RED, TMG GREEN etc).
component Parameter to select - one of Y, U or V components
DESCRIPTION

This function returns the Y, U or V component value of a particular colour. See TMG _cmap_set_colour for a
complete list of available colours.

The Y output has a range of 16..255. The U and V outputs have a range of 0..255. This YUV format is
identical to the output of Snapper-16 (composite/S-Video acquisition module). See TMG image convert for
a description of the conversion formula.

This function calls TMG CK get YUV values internally (which in turn calls
TMG CK get YUV values RGB).

RETURNS

The Y, U or V component as the lower 8 bits of the 32 bit return value, otherwise an error return as defined in
the Error Returns section at the start of this manual.

EXAMPLES

The following example shows how to find the luminance component of the VGA defined colour blue.
YConp = TM5_CK _get _conponent (TMG BLUE, TMG_Y_COVPONENT) ;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG CK get YUV values,
TMG CK get YUV values RGB.

TMG Programmer’s Manual v4.0.1 TMG_CK get parameter 41

TMG_CK _get_parameter

USAGE
Terr TMG CK get parameter(Thandle Hchroma_key, uil6 parameter)

ARGUMENTS
Hchroma_key Handle to a chroma keying structure.
parameter The parameter type to be read.
DESCRIPTION

This function returns selected parameters from the chroma keying structure referenced by Hchroma_key.
Each parameter is described below:

TMG HUE Return the current hue.
TMG _HUE TOL Return the current hue tolerance.
T™G LUMA Return the current luminance.

TMG LUMA TOL Return the current luminance tolerance.

RETURNS

The selected parameter in the lower 16 bits of the return value, otherwise an error return as defined in the
Error Returns section at the start of this manual.

EXAMPLES

The following code reads the current hue setting (without error checking):
Hue = ASL_get _ret(TMG CK set _paranet er (hChromaKey, TMG HUE));

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG CK create, TMG CK set parameter.

TMG Programmer’s Manual v4.0.1 TMG_CK get YUV _values,

TMG CK get YUV values RGB

42

TMG_CK_get_YUV_values,
TMG_CK _get_YUV_values_RGB

USAGE

ui32 TMG CK get YUV values(uil6 colour)
ui32 TMG CK get YUV values RGB(ui8 red, ui8 green, ui8 blue)

ARGUMENTS

colour
red
green
blue

DESCRIPTION

Colour (e.g. TMG RED, TMG GREEN efc).
Red value 0..255.

Green value 0..255.

Blue value 0..255.

TMG CK get YUV values returns the YUV values of a particular colour defined by for example
TMG RED. See TMG cmap_set colour for a complete list of available colours.

TMG CK get YUV values RGB returns the YUV values for a particular colour defined by individual red,

green and blue intensities.

The Y output has a range of 16..255. The U and V outputs have a range of 0..255. This YUV format is

identical to the output of Snapper-16 (composite/S-Video acquisition module). See TMG_image convert for
a description of the conversion formula.

RETURNS

A 32 bit unsigned integer is returned with Y in the lower 8 bits, U in bit positions 8 to 15, and V in bit

positions 16 to 23.

EXAMPLES

The following example shows how to find the luminance component of the colour defined by the following

intensities: red 240, green 100, blue 220:

YWConp = TMG_CK get _YUV_val ues_RGB(240, 100, 220);
YConp = (ui 8) YUVConp;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG CK get component.

TMG Programmer’s Manual v4.0.1 TMG_CK set parameter 43

TMG_CK_set_parameter

USAGE
Terr TMG CK set parameter(Thandle Hchroma_key, uil6 parameter, uil6 value)

ARGUMENTS
Hchroma key Handle to a chroma keying structure.
parameter The parameter type to be set.
value The actual required value.
DESCRIPTION

This function sets parameters in the chroma keying structure referenced by Hchroma_key. Each parameter is
described below:

TMG_HUE Set the desired hue in degrees from 0 to 359.

TMG_HUE TOL Set the hue tolerance - a typical value for a reasonable quality chroma screen would be
20.

T™G LUMA Set the desired luminance or brightness from 0 to 255.

TMG LUMA TOL Set the luminance tolerance - a typical value would be 64.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets values for a typical blue chroma keying screen:

/* Set values for a typical blue chroma screen */
TMG_CK_set _par anet er (hChr onaKey, TMG HUE, 340);
TMG_CK_set _par anet er (hChronmaKey, TM5 HUE TOL, 20);
TMG_CK _set _par anet er (hChr omaKey, TMG LUMA, 120);
TMG_CK_set _par anet er (hChr onaKey, TMG LUVA TOL, 64);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG _CK create, TMG CK get parameter.

TMG Programmer’s Manual v4.0.1 TMG _cmap copy 44

TMG_cmap_copy

USAGE
Terr TMG cmap_copy(Thandle Hin _image, Thandle Hout image)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
DESCRIPTION

This function copies the colourmap from the input image, Hin _image, to the output image, Hout _image. This
function is sometimes useful when using TMG _cmap generate.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment copies the colourmap after generating an optimum colourmap:

TMG _cmap_gener at e(hl mage, 256, TMG_RUN);
/* hSrclmage is the first function used in a chain el sewhere */
TMG _cmap_copy(hl mage, hSrcl mage) ;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_generate.

TMG Programmer’s Manual v4.0.1 TMG_cmap_generate 45

TMG_cmap_generate

USAGE
Terr TMG _cmap_generate(Thandle Himage, uil6 num_colours, uil6 TMG _action)

ARGUMENTS
Himage Handle to an image.
num_colours The number of final colours (including any reserved colours).
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function generates an optimum colourmap for Himage. Himage must be a 24 bit colour image (type
TMG RGB24) or an 8 bit grayscale image (type TMG _Y8). The function analyses the number and type of
colours/gray levels using a proprietary histogram technique and generates a new colourmap for Himage.

The function uses the input parameter, num_colours, to decide how many colours entries the resulting
colourmap will have. The size and contents of Himage s colourmap on entry to the function determines how
many colours to reserve. For example, 16 colours may be set in colourmap locations 0..15 and the colourmap
size set to 16. Then TMG cmap generate would be called with 256 colours as a parameter, which would
mean 240 colours optimised to the image would be stored in the remainder of the locations.

Note that the whole image must be processed before the colourmap can be used by other functions, such as
TMG image_convert. In other words if the image is being processed in strips, the strip loop generating the
colourmap must complete before the (separate) strip loop that uses the colourmap starts.

A colourmap can be saved and re-loaded by simply saving the image as a paletted image - this will force the
colourmap to be saved with the image (and re-loaded on read).

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG image conv_LUT generate, TMG _image convert, TMG cmap_set type,
TMG cmap_get occurrences.

TMG Programmer’s Manual v4.0.1 TMG_cmap_get occurrences 46

TMG_cmap_get_occurrences

USAGE
ui32 TMG cmap_get occurrences(Thandle Himage, uil6 index)

ARGUMENTS

Himage Handle to an image.

index Index into the Himage’s colourmap (0..255).
DESCRIPTION

This function returns the number of occurrences of a particular colour (or gray level) referenced by index,
where index is the location of the colour in Himage’s colourmap. Note that for grayscale images, generating
a colourmap and then using this function is a convenient way of returning histogram information about the
image. (For grayscale images the index value is the same as the actual gray level intensity as long as the
colourmap is allowed to have 256 entries.)

This function can only be used after TMG _cmap generate has been used on Himage.

RETURNS

The number of occurrences of a particular colour as a 32 bit word.

EXAMPLES

The following example shows how to generate a colourmap for an image and then print out a histogram of the
colour index versus the number of occurrences:

ui 16 n;
ui 32 num

TMG i nage_set _paranet er (H nage, TMG CMAP_SI ZE, 0); /* none reserved */
TMG _cmap_gener at e(H mage, 256, TMG_RUN);

printf(“H stogram of 256 npbst popul ar col ours:\n");
for (n = 0; n < 256; n++) {

num = TM5 crmap_get _occurrences(H rmage, n);

printf(“lndex % occurred %d times\n”, (int) n, (long) num;
}

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_generate, TMG cmap get RGB_colour, TMG cmap_find closest colour.

TMG Programmer’s Manual v4.0.1 TMG cmap get RGB colour 47

TMG_cmap_get_RGB_colour

USAGE
ui32 TMG cmap _get RGB_colour(Thandle Himage, uil6 index)

ARGUMENTS

Himage Handle to an image.

index Index into the Himage s colourmap (0..255).
DESCRIPTION

This function returns the RGB value of the colour at position index in Himage’s colourmap. The red, green
and blue component are packed into a 32 bit return value such that red occupies bits 16..23, green 9..15 and
blue 0..7.

RETURNS

A 32 bit unsigned integer is returned with blue in the lower 8 bits, green in bit positions 8 to 15, and red in bit
positions 16 to 23.

EXAMPLES

The following example shows how to read a colour from an image’s colourmap:

ui 32 PackedCol our;
ui 8 red, grn, blu;

PackedCol our = TMG crmap_get RGB_col our (H mage, 0);

red = (ui 8) (PackedCol our >> 16);
grn = (ui8) (PackedCol our >> 8);
blu = (ui8) PackedCol our;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_set RGB_colour.

TMG Programmer’s Manual v4.0.1 TMG _cmap_find closest _colour

48

TMG_cmap_find_closest_colour

USAGE
ui8 TMG cmap find closest colour(Thandle Himage, ui8 red, ui8 green, ui8 blue)

ARGUMENTS
Himage Handle to an image.
red Red intensity of input colour.
green Green intensity of input colour.
blue Blue intensity of input colour.
DESCRIPTION

This function returns the index of the closest colour in Himage’s colourmap to the input colour defined by the
intensities of red, green and blue. The least squares algorithm is used (it uses a LUT to do the multiplication

so its relatively fast).

RETURNS

The index of the closest colour as an 8 bit unsigned integer.

EXAMPLES

The following example shows how to find the nearest colour to a fully saturated red:

ui 8 i ndex;
ui 32 PackedCol our;
ui 8 red, grn, blu;

index = TMG cmap_find_cl osest _col our (H mage, 255, 0, 0);
PackedCol our = TMG crmap_get RGB_col our (H mage, (ui 16) index);

red = (ui 8) (PackedCol our >> 16);
grn = (ui8) (PackedCol our >> 8);
blu = (ui 8) PackedCol our;

printf(“Cosest colour is R %, G %, B %", (int) red, (int) grn, (int)

bl u);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap _get RGB colour, TMG cmap generate.

TMG Programmer’s Manual v4.0.1 TMG_cmap is_grayscale

49

TMG_cmap_is_grayscale

USAGE
Thoolean TMG cmap is grayscale(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns TRUE if Himage’s colourmap contains only gray levels.

RETURNS
Returns TRUE or FALSE.

EXAMPLES
The following code fragment reads an image and determines if it is colour or not (this is actually a slightly
simplified version of TMG image is_colour):

TMG_ i nage_set _infil enane(hl mage, “sky.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
if (TMG_i mage_get _paraneter (hl mage, TMG Pl XEL_FORMAT) == TMG_PALETTED)
if (TMG crmap_is_grayscal e(hl nage) == TRUE)
printf(“We have a grayscal e paletted i nage”);

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG image_is_colour.

TMG Programmer’s Manual v4.0.1 TMG_cmap_set_colour

50

TMG_cmap_set_colour

USAGE
Terr TMG _cmap_set_colour(Thandle Himage, uil6 index, uil6 colour)

ARGUMENTS
Himage Handle to an image.
index The colourmap entry.
colour The colour, which can be one of the following:
TMG BLACK TMG GRAY
TMG BLUE TMG LIGHT BLUE
TMG GREEN TMG LIGHT GREEN
TMG CYAN TMG LIGHT CYAN
TMG RED TMG LIGHT RED
TMG MAGENTA TMG LIGHT MAGENTA
TMG YELLOW TMG LIGHT YELLOW
TMG WHITE TMG LIGHT WHITE
DESCRIPTION

This function sets a colour in Himage s colourmap using one of the above colours. The non-light colours
have individual colour intensities of 152 and the light colours have intensities of 255.

Internally this functions calls TMG cmap _set RGB_colour.

This function is generally used in conjunction with TMG cmap_generate.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets three colours:

TMG _cmap_set _col our (hl mage, 0, TMG LI GHT_RED);
TMG _cnmap_set _col our (hl mage, 1, TMG LI GHT_WH TE);
TMG _cnap_set _col our (hl mage, 2, TMG LI GHT_BLUE);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_set RGB_colour, TMG cmap_set type.

TMG Programmer’s Manual v4.0.1 TMG _cmap_set RGB_colour 51

TMG_cmap_set RGB_colour

USAGE
Terr TMG cmap set RGB_colour(Thandle Himage, uil6 index, ui8 red, ui8 green, ui8 blue)

ARGUMENTS
Himage Handle to an image.
index The colourmap entry.
red The red intensity (0..255).
green The green intensity (0..255).
blue The blue intensity (0..255).
DESCRIPTION

This function writes an individual colour into Himage’s colourmap. It is generally used in conjunction with
TMG cmap_generate.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets three colours:

TMG _cnap_set _RGB_col our (hl nage, 0, 255, 0, 0);
TMG _cnap_set _RGB _col our (hl mage, 1, 255, 255, 255);
TMG _cnap_set _RGB _col our (hl nage, 2, 0, 0, 255);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_set_colour, TMG cmap_set _type, TMG cmap generate.

TMG Programmer’s Manual v4.0.1 TMG _cmap_set_type 52

TMG_cmap_set_type

USAGE
Terr TMG _cmap_set _type(Thandle Himage, uil6 type)

ARGUMENTS
Himage Handle to an image.
type The type of colourmap/palette required. This can be one of the following:
TMG VGA16, TMG GRAYSCALE RAMP, TMG 332 RGB, TMG BLACK.
DESCRIPTION

This function writes a colourmap into Himage'’s colourmap. The colourmap size is automatically set to 16 for
TMG VGAI6, and 256 for TMG GRAYSCALE RAMP, TMG 332 RGB and TMG BLACK. The colourmap
types are as follows:

TMG VGAl6 The palette is set to a size 16, consisting of a standard DOS or Windows 3.1
VGA palette. That is the entries 0 to 15 are as follows:
0 Black 8 Gray ("Light Black")
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Yellow 14 Light Yellow
7 White 15 Light White
TMG 332 RGB A 256 entry colourmap, based on RGB 332. That is, it is a direct

colourmap, such that each entry is represented by three bits of red, three bits
of green and two bits of blue, with red at the most significant end of the

byte.

TMG GRAYSCALE RAMP A 256 entry colourmap, where each entry represents a grayscale from 0 to
255, with entry 0 having value 0, linearly increasing to entry 255 having
value 255.

TMG BLACK This simply clears down all the entries to black and automatically sets the
colourmap size to 256.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment sets the first 16 colourmap entries to the standard VGA set of colours:
TMG _cnap_set _type(hl mage, TMG VGAL6);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.1 TMG _cmap_set_type 53

SEE ALSO
TMG cmap_set RGB_colour, TMG cmap generate.

TMG Programmer’s Manual v4.0.1 TMG_display box fill [DOS] 54

TMG_display_box_fill [DOS]

USAGE
Terr TMG display_box_fill(Thandle Hdisplay, uil6 colour, il6 *roi)

ARGUMENTS
Hdisplay Handle to a display.
colour Colour of the box.
roi “ROI” array with four elements, with #defined element names:
ASL ROI X START Horizontal start position (0 = left of screen).
ASL ROI Y START Vertical start position (0 = bottom of screen).
ASL ROI X LENGTH Horizontal width of box.
ASL ROl Y LENGTH Vertical height of box.
DESCRIPTION
This function draws a box on the screen in one of the following solid colours (the Flash Graphics definitions
are used):
FG BLACK FG _GRAY
FG BLUE FG LIGHT BLUE
FG _GREEN FG LIGHT GREEN
FG CYAN FG LIGHT CYAN
FG RED FG LIGHT RED
FG MAGENTA FG LIGHT MAGENTA
FG YELLOW FG BROWN
FG WHITE FG LIGHT WHITE
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES

See the example for TMG display draw text [DOS]

BUGS / NOTES

This function is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples” at the start of this manual.

If this function is used in paletted display modes, the first 16 colours need to be reserved for the standard set
of VGA colours (see TMG _cmap_set_type), otherwise the colour of the drawn boxes is unlikely to be as
expected!

There are no known bugs.

SEE ALSO
TMG display clear [X Windows, DOS].

TMG Programmer’s Manual v4.0.1 TMG _display clear [X Windows, DOS] 55

TMG_display_clear [X Windows, DOS]

USAGE
Terr TMG display clear(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to a display.

DESCRIPTION
This function clears the display to black.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example for TMG display draw text [DOS].

BUGS / NOTES

This function is only supported under DOS and X Windows. Under DOS the Flash Graphics library is
required. See the section on “Image Display Functions and Examples” at the start of this manual.

Under DOS, if this function is used in paletted display modes, the first 16 colours need to be reserved for the
standard set of VGA colours (see TMG_cmap_set_type), otherwise the display may not be cleared to black.

There are no known bugs.

SEE ALSO
TMG display box_fill [DOS].

TMG Programmer’s Manual v4.0.1 TMG _display cmap [DOS] 56

TMG_display_cmap [DOS]

USAGE
Terr TMG display cmap(Thandle Hdisplay, Thandle Himage, uil6 TMG action)

ARGUMENTS
Hdisplay Handle to a display.
Himage Handle to an image.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION
This function displays Himage’s colourmap. Often it can be useful to see the colourmap during code
development.
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES

The following code sets up a colourmap, installs it in the display hardware and displays it:

/* Setup the colourmap - note we nust reset the size to 256 as TMG _VGA16
*will set it to a size of 16.
>/

TMG cnap_set _type(hl mage, TMG 332_RGB);

TMG _cnap_set _type(hl mage, TMG VGALG);

TMG_ i nage_set _par anet er (hl nage, TMG_CVAP_SI ZE, 256);

/* initialise the display and wite the colourmap to the hardware */
TMG di splay_init (hDi splay, TMG 800x600x8_RGB); /* pal etted node */
TMG _di splay_cmap_i nstal | (hDi spl ay, hlnage);

/* finally display the col ourmap */
TMG_di spl ay_cmap(hDi spl ay, hlmage, TMG _RUN);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples” at the start of this manual.

There are no known bugs.

SEE ALSO
TMG display cmap install, TMG cmap generate.

TMG Programmer’s Manual v4.0.1 TMG_display cmap_install [X Windows, DOS] 57

TMG_display_cmap_install [X Windows, DOS]

USAGE
Terr TMG display cmap _install(Thandle Hdisplay, Thandle Himage)

ARGUMENTS

Hdisplay Handle to a display.

Himage Handle to the image containing the desired colourmap.
DESCRIPTION

This function writes Himage’s colourmap into the display’s hardware colourmap (or palette). The display
must be in a paletted mode for the function to work.

Under DOS, the colourmap will be immediately applied.

Under X Windows, the colourmap is applied when the window with which its associated with receives input
focus (i.e. when the mouse pointer is moved into it).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example code for TMG display cmap [DOS].

BUGS / NOTES

Under DOS, this function requires the Flash Graphics library. See the section on “Image Display Functions
and Examples” at the start of this manual.

There are no known bugs.

SEE ALSO
TMG display init, TMG display cmap [DOS], TMG cmap generate.

TMG Programmer’s Manual v4.0.1 TMG_display_create 58

TMG_display_create

USAGE
Terr TMG _display _create()

ARGUMENTS

None.

DESCRIPTION

This function creates an internal display structure and returns a handle as a reference to it. The display
structure referenced by the display handle stores information such as the screen dimensions, colour depth,
associated window etc. A new display handle would be created for each display or window within a display.
For multiple paint areas within one window, again a new display handle would be created and initialised.

RETURNS

On success a valid handle is returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES
The following code creates a display structure and gets a handle to it:

Thandl e hDi spl ay; /* Handl e to display structure */

if (ASL_is_err(hDisplay = TMG di splay_create())
printf(“Failed to create display handle”);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is supported under all supported operating systems. Under DOS this function requires the Flash
Graphics library and a VESA compatible graphics card.

There are no known bugs.

SEE ALSO

TMG display destroy, TMG display_init, TMG display set ROI, TMG display set parameter,
TMG display set flags.

TMG Programmer’s Manual v4.0.1 TMG_display destroy 59

TMG_display_destroy

USAGE
Thandle TMG display_destroy(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to a display structure or TMG ALL HANDLES.

DESCRIPTION

This function destroys a display structure, by freeing all the memory associated with that structure, and frees
the display handle.

If the parameter TMG ALL HANDLES is used, all previously created display structures are destroyed and
their associated handles freed.

TMG image destroy(TMG _ALL HANDLES) will destroy all TMG display structures by calling

TMG display_destroy for all display handles. This is a convenient way of destroying everything with just
one function call.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys a previously created display structure:
Thandl e hDi spl ay;

hDi splay = TMG create_di spl ay();

/* Destroy the display structure */
TMG_di spl ay_destroy(hDi spl ay) ;

In practice it is generally easier and more convenient to use TMG image destroy(TMG ALL HANDLES) to
destroy all TMG structures on exit from the application.

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is supported under all supported operating systems. Under DOS this function requires the Flash
Graphics library and a VESA compatible graphics card.

There are no known bugs.

SEE ALSO
TMG display create, TMG_image destroy.

TMG Programmer’s Manual v4.0.1 TMG_display direct w31 [Windows 3.1] 60

TMG_display_direct_w31 [Windows 3.1]

USAGE

Terr TMG display direct w31(Thandle Hbase, Thandle Himage, ui32 phys addr, uil6 x_start, uil6
y_start, uil6 display width, uil6 display depth, uil6 operation)

ARGUMENTS
Hbase Handle to a Bus Interface Board.
Thandle Handle to the image to be displayed.
phys_addr The physical address of the PCI display card’s frame memory.
x_start The X coordinate of the top left of the image’s target position.
y_start The Y coordinate of the top left of the image’s target position.

display width ~ The width of the display in pixels.
display depth The depth of the display in bytes.

operation The pixel operation, one or more of TMG COPY, TMG LAT INV, TMG VERT INV,
TMG ROTATE180, TMG CHECKERO, TMG CHECKERI, TMG MASKBL.

TMG RESET is a special case described below.

DESCRIPTION

NOTE: This function is called internally by TMG display image when the flag TMG DISPLAY DIRECT is
set and DCI is not present. It is documented here for the purposes of describing the raster operations defined
by operation. In general this function should not be called directly.

This function provides the facility to write directly from PC host memory to certain PCI VGA cards at very
high speed. It uses the same methodology as DCI (which if available should be used instead - as it supports
full window clipping etc). The command bypasses the usual Windows GDI (graphical device interface) and
the display card driver, so therefore it will always write the image on top (i.e. there can be no overlapping
windows). It is up to the application to determine whereabouts to write the image. The following paragraphs
explain each of the parameters:

Hbase is the usual handle to a Snapper Bus Interface Board (see the Bus Interface Library Programmer’s
Manual).

phys_address is the physical address of start of frame memory for the display card. Typically, PCI VGA
cards are addressed near the top of the PC’s address space. For example at 0xf0000000. Many PCI display
cards use the first 16 Mbytes for register and control access and the next 16 Mbytes for frame memory.
Therefore a typical start address of frame memory would be 0xf0800000. The example code fragment below
shows how to extract the base address using two Snapper driver functions (which internally make calls to the
PCI BIOS).

x_start and y_start are the coordinates of the top left of the target area for the image. The origin is at the top
left of the display.

screen_width is the width of the display in pixels (e.g. 800, 1024 etc).

screen_depth is the depth in bytes of the display. Valid depths are 2 and 4 only. This represents 15 and 16
bit colour modes (2 bytes deep) and the 32 bit (24 bits per pixel, but 32 bit word aligned) colour mode
respectively.

operation specifies the pixel operation to do whilst displaying the image. The options listed below can be
ORed together to provide multiple operations at the same time (without any loss of speed). TMG RESET is
not a pixel operation like the other operations but a method of freeing the internal memory selectors used.
See the description below for more details.

MG _COPY Simple copy operation.

TMG Programmer’s Manual v4.0.1 TMG_display direct w31 [Windows 3.1] 61

TMG_LAT INV
TMG_VERT _INV
TMG_ROTATEI180

TMG CHECKERO

TMG CHECKERI
TMG MASKBL

TMG RESET

RETURNS

The image is laterally inverted.
The image is vertically inverted.

The image is rotated 180 degrees. This is actually equivalent to (TMG _LAT INV |
TMG _VERT INV).

A checkerboard mask is applied, the block size of which is defined by
TMG CHECKERQ | <size>, where <size> is a 16 bit unsigned integer.
TMG CHECKERO will update the top left square.

Same as TMG_CHECKERQO except it will now not update the top left square.

The same as TMG_COPY except the bottom left quadrant of the image will not get
updated. This option is not available with the checkerboarding modes, but works with
all other modes.

When the function TMG display direct w31 [Windows 3.1] is called for the first
time, memory selectors are used internally to reference the display memory. These
selectors are freed and re-allocated whenever the size of the displayed image (or the
display mode) is changed. To free these selectors the function should be called with
operation setto TMG RESET. Typically this would be done on program exit.

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code shows how to read the physical address of the PCI graphics card and use the write direct

function:

ui 8 bus_num dev_func_num

ui 32 phys_addr;

/* setup physical address */
PCl _DRV _find_class_code((ui32) 0x030000, 0, &bus_num &dev_func_num;

phys_addr =

PCl _DRV_read_cs_ui 32(bus_num dev_func_num (ui16) 0x10);

phys_addr += 0x800000; /* display hardware dependent, but typical */

/* optimsed capture and display |oop */
SNP24_capt ur e(Hsnp24, SNP24_START_AND RETURN) ;

while (live == TRUE)

{

while (SNP24_is_capture_fini shed(Hsnp24) == FALSE)

SNP24_read_vi deo_dat a(Hsnp24, Hi mage, TMG RUN);
SNP24_capt ure(Hsnp24, SNP24_START_AND RETURN); /* start next capture */
TMG di spl ay_di rect _w31(Hbase, Hi mage, phys_addr, 4, 50, 1024, 2,

TMG _LAT_INV);

BUGS / NOTES

This is a low level function only applicable under Windows 3.1. It is called by TMG display image and
writes directly to display hardware and therefore cannot be guaranteed to work on all PCI display cards.
However it is known to work on several popular PCI graphics cards. It is strongly recommended that DCI is
used in preference to this function under Windows 3.1. In fact an even better solution is to use Windows NT

and DirectDraw.

TMG Programmer’s Manual v4.0.1 TMG_display direct w31 [Windows 3.1] 62

SEE ALSO

PCI DRV DMA to display win31 (described in the Snapper Bus Interface Board Library Programmer’s
Manual)

TMG Programmer’s Manual v4.0.1 TMG_display draw text [DOS] 63

TMG_display_draw_text [DOS]

USAGE
Terr TMG display draw text(Thandle Hdisplay, char *text, uil6 x, uil6y)

ARGUMENTS
Hdisplay Handle to a display.
text Text string to write to the display.
x X position of the text (origin = bottom left).
y Y position of the text (origin = bottom left).
DESCRIPTION

This function writes text in the previously initialised font size (using TMG display set font [DOS]) to the
display at screen coordinates x, y (the origin is at the bottom left). The text is written as light white
(TMG _LIGHT WHITE).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets a font type and draws the text in the top left of the screen, over a green box:

ui 16 ScreenHei ght;
i16 Roi [ASL_SIZE 2D RO J;

TMG_di spl ay_cl ear (hDi spl ay) ;
ScreenHei ght = (ui 16) TMG di spl ay_get _paranet er (hDi spl ay, TMG HEl GHT) ;

Roi [ASL_RO _X_START] 0;

Roi [ASL_RO _Y_START] ScreenHei ght - 110;

Roi [ASL_RO _X_LENGTH = 274;

Roi [ASL_RO _Y_LENGTH = 100;

TMG di spl ay_box_fill (hDi splay, FG GREEN, Roi);

TMG di spl ay_set _font (hDi spl ay, TMG FG 15X19);

TMG_di spl ay_draw_text (hDi splay, “TM5 - FG Denp”, 10, ScreenHei ght - 40);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is only supported under DOS and requires the Flash Graphics library. See the section on
“Image Display Functions and Examples” at the start of this manual.

If this function is used in paletted display modes, the first 16 colours need to be reserved for the standard set
of VGA colours (see TMG _cmap_set_type), otherwise the colour of the drawn boxes is unlikely to be as
expected!

Greater control of over the text (such as alternative colours) is provided by the Flash Graphics library and
direct calls can be made from applications using the TMG library. For further details see the Flash Graphics
manual.

SEE ALSO
TMG display set font [DOS].

TMG Programmer’s Manual v4.0.1 TMG _display get flags

64

TMG_display_get_flags

USAGE
Thoolean TMG display get flags(Thandle Hdisplay, uil6 type)

ARGUMENTS
Hdisplay Handle to a display structure.
type Flag type.

DESCRIPTION

This function returns the boolean state of the flag, selected by type, in Hdisplay.
The flag types are described in TMG_display set flags.

RETURNS
Returns TRUE or FALSE.

EXAMPLES

The following code determines if the display is colour:

if (TMG display_get_flags(hDisplay, TM5 DI SPLAY_ IS COLOUR) == TRUE)
printf(“We have a col our display”);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display set flags, TMG display get parameter, TMG display init.

TMG Programmer’s Manual v4.0.1 TMG_display get hWnd [Windows]

65

TMG_display_get_hWnd [Windows]

USAGE
HWND TMG display get hWnd(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to a display.

DESCRIPTION

This function returns Hdisplay’s internal window handle. If Hdisplay is not valid, 0 is returned.

RETURNS

The handle to the window that Hdisplay references on success, otherwise 0.

EXAMPLES

The following code fragment shows a sub-routine used to repaint a window:

/* Repaint image */
voi d S24Repai nt ()

{
RECT rc;
;1 CGetCientRect (TMG di spl ay_get _hwWid(S24. m hDi spl ay), &rc);
::lnvalidat eRect (TMG di spl ay_get _hWid(S24. m hDi spl ay), &c, TRUE);
}
BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display init, TMG display set hWnd [Windows].

TMG Programmer’s Manual v4.0.1 TMG_display get paint hDC [Windows] 66

TMG_display_get_paint_hDC [windows]

USAGE
HDC TMG display get paint_ hDC(Thandle Hdisplay)

ARGUMENTS
Hdisplay Handle to a display.

DESCRIPTION

This function returns Hdisplay s internal handle to a device context. If Hdisplay is not valid, 0 is returned.
Generally the device context will be 0 (i.e. no device context) because it is released on exit from

TMG display image. The only time it isn’t 0 is when the application has set it (before TMG display image
or TMG display print DIB [Windows] is called). This function is rarely needed and only documented for
completeness.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
HDC hDC,

hDC = TMG di spl ay_get _pai nt _hDC(hDi spl ay) ;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display print DIB [Windows], TMG display set paint hDC [Windows].

TMG Programmer’s Manual v4.0.1 TMG_display get parameter

67

TMG_display_get_parameter

USAGE
ui32 TMG display get parameter(Thandle Hdisplay, uil6 parameter)

ARGUMENTS
Hdisplay Handle to a display structure.
parameter Parameter type.
DESCRIPTION

This function returns the value of an internal parameter from Hdisplay selected by parameter. The parameter

is always returned as a 32 unsigned integer although some of the parameters are stored as 16 unsigned

integers internally in the display structure.

The parameter types are described in TMG image set_parameter.

RETURNS

The parameter selected by parameter as an unsigned 32 bit integer (ui32).

EXAMPLES

The following code fragment reads back the screen resolution:

ui 32 width;
ui 32 hei ght;

wi dth = TMG di spl ay_get _par anet er (hDi spl ay, TMG W DTH);
hei ght = TMG di spl ay_get _paraneter (hDi spl ay, TMS HEl GHT) ;
printf(“Display size = %d x %d”, (long) width, (long) height);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display set parameter, TMG display set flags.

TMG Programmer’s Manual v4.0.1 TMG_display get ROI

68

TMG_display_get_ROI

USAGE
Terr TMG display get ROI(Thandle Hdisplay, il6 *roi)

ARGUMENTS
Hdisplay Handle to a display structure.
roi ROI array with four elements, with #defined element names:
ASL ROI X START Horizontal start position of ROI (0 = left of region).
ASL ROI Y START Vertical start position of ROI (0 = top of region).

ASL ROI X LENGTH Horizontal width of ROI.
ASL ROI Y LENGTH Vertical height of ROI.
DESCRIPTION

This function copies the current ROI (Region of Interest) into the array roi.

The top left corner of the region is defined with the ASL ROI X START and ASL ROI Y START

coordinates and the region size defined with the ASL ROl X LENGTH and ASL ROI Y LENGTH values.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code reads back the display ROI:

i16 Roi [ASL_SIZE 2D RO]; /* a 4 element array */
i 16 RO W dt h;
i 16 RO Hei ght;

TMG_di spl ay_get _RO (hDi spl ay, Roi);

ROWdth = Roi [ASL_RO X LENGTH] ;
RO Hei ght = Roi [ASL_RO _Y LENGTH|;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display get ROI, TMG display image.

TMG Programmer’s Manual v4.0.1 TMG_display image 69

TMG_display_image

USAGE
Terr TMG display image(Thandle Hdisplay, Thandle Himage, uil6 TMG action)

ARGUMENTS
Hdisplay Handle to a display.
Himage Handle to an image.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function displays the image Himage, to the display (or window) referenced by Hdisplay.

DOS

Under DOS, strip processing is fully supported and the function can be used in a strip processing loop in the
same way as other TMG functions, although with modern PCs there is almost always enough memory not to
worry about strip processing.

The image pixel format must always be the same as that of the display. For example if the display is
initialised as TMG_800x600x16 (i.e. 16 bit colour), then the image to be displayed must be type
TMG RGBI6.

WINDOWS

Under Windows NT, 95 and 3.1 the TMG display API is the same, but with Windows 3.1 having an extra
specialist function (TMG _display direct w31 [Windows 3.1]). For all these operating systems, the image
must be displayed in one strip - i.e. the whole image at a time.

There are three methods by which images can be displayed under Windows - these are DIB, DDB and
DirectDraw (or DCI as it’s called on Windows 3.1). The algorithm to decide which method to use is as
follows: Ifthe TMG IS DIB flag is set, then the image will be displayed as a DIB. Ifiit is not set and the
TMG DISPLAY DIRECT flag is set then DirectDraw will be used (if available, or else a proprietary direct
display method), otherwise DDB will be used. Each method is described in detail below:

Firstly the image can be displayed as a (24 bit) DIB. A DIB is a device independent bitmap which will get
displayed under any graphics mode by the graphics driver (to the best of its ability). To generate a DIB
image, TMG image convert is be used with the output format set to TMG _BGR24 and the TMG IS DIB flag
set. This method is usually not the fastest, but is generally very reliable - i.e. it should always work. The
quality of the rendered image will vary according to the screen mode and graphics card driver. It is strongly
recommended to use 32k colours or more. To achieve full 8 bit dynamic range on each primary colour
(and/or gray levels), a 32 bit display mode will need to be used (i.e. 16.7 million colours).

The second method is to convert the image into the required pixel format prior to display, so that the graphics
card driver does not need to convert the pixel format itself. This method is referred to as the DDB method
(Device Dependent Bitmap). This time, TMG_image convert is used to convert the pixel format of the image
to that of the display (or it may be acquired from video acquisition hardware already in that pixel format).

The display’s pixel format can be determined using the function TMG display get parameter. This method
is generally faster than the DIB method but has been known to fail on some graphics cards - usually because
graphics card driver does not support “BitBlt of greater than 64k bytes” at a time. (This DDB method only
really applies to Windows 3.1 — for Windows NT and 95, DirectDraw, as described below, is the preferred
method.)

The third method, and certainly for Windows NT and 95 is using a direct access (and hence fast) method —
DirectDraw for Windows NT/95, or DCI (Display Control Interface). To use the direct method, the flag

TMG Programmer’s Manual v4.0.1 TMG_display image 70

TMG DISPLAY DIRECT is set (see TMG display set flags). DirectDraw (or DCI) requires a driver from
the graphics card vendor that supports this direct API (and for Windows 3.1, the Video for Windows runtime
libraries). (Video for Windows runtime should be available from your graphics card vendor and is often
provided with the vendor’s Windows 3.1 drivers.)

Display under DirectDraw/DCI can also make use of the TMG HALF ASPECT flag and TMG FIELD ID
parameter to re-interlace fields whilst displaying to re-construct full size correct aspect ratio images at high
speed.

X WINDOWS

Under X Windows the image must always be displayed in one strip - i.e. the whole image at a time.

The image pixel format must always be the same as that of the display - that is either paletted or 32 bit (i.e.
TMG PALETTED or TMG XBGR32). For detailed examples, see the application examples supplied with the
Solaris or LynxOS SDKs.

MacOS

Under MacOS the image must always be displayed in one strip - i.e. the whole image at a time. The action
parameter is ignored.

The image must be supplied in one of the following formats: TMG Y8, TMG Y16, TMG RGBI5 or
TMG XBGR32.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the examples in the “Image Display Functions and Examples™ section at the start of this manual.

BUGS / NOTES

Under DOS this function requires the Flash Graphics library. See the section on “Image Display Functions
and Examples” at the start of this manual.

Under all operating systems, apart from DOS, the image must be displayed in one strip - i.e. the whole image
at a time.

There are no known bugs.

SEE ALSO
TMG display init, TMG display direct w31 [Windows 3.1].

TMG Programmer’s Manual v4.0.1 TMG display _init

71

TMG_display_init

USAGE
Terr TMG display init(Thandle Hdisplay, HWND hWnd) [Windows]
Terr TMG display init(Thandle Hdisplay, uil6 mode) [DOS, X Windows]
Terr TMG display init(Thandle Hdisplay, PixMapHandle hPmap) [MAC]

ARGUMENTS
Hdisplay Handle to a display.
hWnd Handle to a window [For Windows, MAC].
mode For DOS this is set to the graphics mode - see below.
For X Windows this parameter must be set to TMG_X WINDOWS.
DESCRIPTION
WINDOWS

This function initialises the internal structure referenced by Hdisplay using the handle to a valid window,
hWnd. The display organisation (i.e. depth, colour format etc) is derived and stored within the structure.
TMG_display get parameter can be used to examine these fields. If DirectDraw (or DCI - Display Control
Interface for Windows 3.1) is present, it will be initialised and its presence can be tested using

TMG display get parameter with the parameter TMG _DISPLAY DIRECT CAPS. If the return value is
non-zero, DirectDraw (or DCI) is present.

The following display types are supported at all resolutions:

¢ 32K colours with colour organisation RRRRRGGGGGBBBBB (TMG _RGBI15).

* 65K colours with colour organisation RRRRRGGGGGGBBBBB (TMG _RGB16) (Preferred mode).
¢ 16.7 million colours with colour organisation BGR24 (TMG _BGR24).

e 16.7 million colours with colour organisation BGRX32 (TMG_BGRX32) (Preferred mode).

The 16.7 million colours mode using colour organisation BGR24 (sometimes known as “packed pixel”) has
limited support for fast display update. This is because each pixel is not aligned to 32 bits, thus certain raster
operations are not so efficient. It is strongly recommended that the alternative modes are used.

The 32K and 64K colour modes give good performance and good colour quality, although some degradation
will be noticed on gradually changing tones. BGRX32 provides the ultimate quality and is only slightly
slower than the 16 bit modes.

When displaying to multiple windows, a display handle should be created and initialised for each window.

DOS
This function initialises the graphics card to one of the following screen modes:

T™MG DOS PROMPT This puts the display into the usual DOS text mode. It is used to
switch the display back to text mode from one of the graphics modes
described below.

TMG 640x480x8 GRAYSCALE This is an 8 bit grayscale paletted mode, with a screen resolution of
640 x 480, where the palette is written with grayscales from 0 to 255.
For example, writing a pixel value of 255 results in white.

TMG 640x480x8_RGB This is an 8 bit colour paletted mode, with a screen resolution of 640
x 480, where the palette is written to contain a RGB 3:3:2 direct
colourmap. For example, writing a pixel value of OXFF results in

TMG Programmer’s Manual v4.0.1

TMG display _init

72

TMG_640x480x16

TMG_640x480x24

TMG 800x600x8 GRAYSCALE

TMG_800x600x8 RGB

TMG 800x600x15

TMG 800x600x16

TMG 800x600x24

TMG 1024x768x8 RGB

TMG 1280x1024x8_RGB

X WINDOWS

white; OXEO results in a fully saturated red; 0x03 in blue etc.

This is a 16 bit colour mode, with a screen resolution of 640 x 480,
where the colours are represented by RGB 5:6:5. For example a
pixel value of 0xF800 results in a saturated red; and 0x001F in a
saturated blue etc.

This is a 24 bit colour mode, with a screen resolution of 640 x 480,
where the colours are represented by RGB 8:8:8.

This is an 8 bit grayscale paletted mode, with a screen resolution of
800 x 600. The palette is the same as
TMG 640x480x8 GRAYSCALE.

This is an 8 bit colour paletted mode, with a screen resolution of 800
x 480. The palette is the same as TMG _640x480x8_RGB.

This is a 15 bit colour mode, with a screen resolution of 800 x 600,
where the colours are represented by RGB 5:5:5.

This is a 16 bit colour mode, with a screen resolution of 800 x 600.
Pixel values are mapped into colours in the same way as
TMG 640x480x16.

This is a 24 bit colour mode, with a screen resolution of 800 x 600,
where the colours are represented by RGB 8:8:8.

This is an 8 bit colour paletted mode, with a screen resolution of
1024 x 768. The palette is the same as TMG_640x480x8_RGB.

This is an 8 bit colour paletted mode, with a screen resolution of
1280 x 1024. The palette is the same as TMG 640x480x8 RGB.

This function initialises the internal structure referenced by Hdisplay. The parameter mode, must be set to
TMG X WINDOWS. The X display is opened using the DISPLAY environment variable

(i.e. XOpenDisplay(NULL) is called). Various parameters are set internally in the display structure including
the width, height, depth and if applicable, number of free colours, of the display. These may be examined
using the function TMG display get parameter.

Only paletted and 24 bit displays are supported. However this covers the majority of SPARCstation based
Solaris 2 environments. The pixel formats in detail are:

e Paletted: 8 bit writeable palette (or colourmap) (TMG _PALETTED).
e 16.7 million colours with colour organisation XBGR32 (TMG XBGR32). This mode is basically 24 bits
per pixel, but with each pixel aligned to a 32 bit word boundary. The display depth and pixel format
returned by TMG display get parameter are 24 and TMG RGB24 respectively, rather than the expected
32 and TMG XBGR32. This is because internal X functions, such as XCreatelmage expect a depth of 24
even though the display is really 32 bits deep.

The 24 bit display mode is much better quality and is often faster in terms of overall performance (as no
colourmapping operations are needed).

When displaying to multiple windows, a display handle should be created and initialised for each window.

MacOS

This function initialises the internal structure referenced by Hdisplay using the handle to a valid window
pixmap, hPmap, attached to the window area you want to display in. The display organisation (i.e. depth,
colour format etc) is derived and stored within the structure. TMG display get parameter can be used to

examine these fields.

TMG Programmer’s Manual v4.0.1 TMG_display_init 73

The default settings are for image stretching to fit the window size. This can be over-ridden by a subsequent
call to TMG display set parameter with the argument of TMG STRETCH set to zero.

The MAC display modes supported are 256-level greyscale, 64K greyscale, “thousands of colours” and
“millions of colours”:

e 256 greyscale (TMG Y8).

e 64K greyscale (TMG YI6).

e 32K colours with colour organisation RRRRRGGGGGBBBBB (TMG _RGBI5).

¢ 16.7 million colours with colour organisation BGRX32 (TMG _BGR24) (Preferred mode).

The 32K colour mode gives good performance and good colour quality, although some degradation will be
noticed on gradually changing tones. BGRX32 provides the ultimate quality.

When displaying to multiple windows, a display handle should be created and initialized for each window.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

WINDOWS

The following initialises the TMG display structure in the view class the first time that OnDraw is called:
voi d CS24Vi ew. : OnDr awm(CDC* pDC)

{
static BOOL bFirstTine = TRUE;
if (bFirstTime == TRUE)
{
TMG di splay_init(S24. m hDi spl ay, GCet Saf eHwnd());
TRACE(“Direct Draw Caps = %098l x\ n”,
TMG_di spl ay_get _par anmet er (S24. m_hDi spl ay, TMG DI SPLAY_DI RECT_CAPS));
bFirstTi me = FALSE;
}
}

See also the extended examples in the “Sample Applications” section.

DOS
The following initialises the display to a resolution of 800 by 600 in 65K colours:
Thandl e hDi spl ay;

hDi splay = TMG di spl ay_create();

TMG di splay_init (hDi splay, TMG 800x600x16) ;
getch(); /* Press any key to exit */
TMG_di splay_init (hDi splay, TMG DOS_PROWPT) ;
exit(0);

See also the extended examples in the “Sample Applications” section.

X WINDOWS

See the section “Image Display Functions and Examples”.

TMG Programmer’s Manual v4.0.1 TMG display _init 74

MacOS

The following code fragment obtains a PixMap handle from a valid grafport window and initialises the
display with it as the destination:

Pi xMapW ndow hpnPl ayThr u;
hDi spl ay = TMG di spl ay_create();

/* Cbtain a valid PixMapWndow to display with */
hprPl ayThru = Get W ndowPor t (pwMW ndow) - >por t Pi xMVap;

/* Initialise display with PixMapW ndow */
TMG di splay_init (hDi splay, hpnPl ayThru);

See also the section “Image Display Functions and Examples”.

BUGS / NOTES

Under Windows, display modes of 256 colours or less are not supported by the TMG library. However the
Windows API may be programmed directly if 256 colours or less have to be used.

Under DOS this function requires the Flash Graphics library and a graphics card capable of VESA display
modes. See the section on “Image Display Functions and Examples” at the start of this manual.

In the Flash Graphics library there are more supported graphics mode which are readily programmed. Direct
calls can be made from applications using the TMG library direct to the Flash Graphics library. For further
details see the Flash Graphics manual.

There are no known bugs.

SEE ALSO
TMG display create.

TMG Programmer’s Manual v4.0.1 TMG display print DIB [Windows] 75

TMG_display_print_DIB [Windows]

USAGE

Terr TMG display print DIB(Thandle Hprinter, Thandle Himage, il6 percentage, uil6 TMG action)

ARGUMENTS
Hprinter
Himage
percentage
TMG action

DESCRIPTION

Handle to a printer (this is identical to a display handle).
Handle to an image.
Percentage scaling factor (100% = full print area).

Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

This function is a convenient way of printing DIB images under Windows. Hprinter is created in the same
way as a display handle, but the device context and internal device dimensions are modified (see example

below).

percentage is used to control the size of the printed image. It represents the percentage of the maximum print
area whilst still preserving the image’s aspect ratio.

The image must always be displayed in one strip - i.e. the whole image at a time.

The function name includes “_display” in it because it is a sub-set of the display function group.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following example shows how the device context is tested upon and then the image is either printed or
displayed as appropriate:
voi d CS24Vi ew. : OnDr awm(CDC* pDC)

{

if (TMG.i nage_get _ptr(S24. m hDl Bl mage, TMG | MAGE_DATA) != NULL)
if (pDC->IsPrinting()) {

}

/1 Set up the printer dinmensions, then print
TMG _di spl ay_set _paraneter (S24. m hPrinter, TMG W DTH,

(ui 16) pDC- >Cet Devi ceCaps(HORZRES)) ;
TMG di spl ay_set _paranet er (S24. m hPrinter, TMG HEl GHT,

(ui 16) pDC- >Cet Devi ceCaps(VERTRES)) ;
TMG_di spl ay_set _pai nt _hDC(S24. m hPrinter, pDC- >Get Saf eHdc());
TMG di spl ay_print_DI B(S24. m hPrinter, S24.m hDl Bl mage, 85, TMG RUN);
TMG di spl ay_set _pai nt _hDC(S24. m hPrinter, 0);

el se
{ I* display */

TMG_di spl ay_set _pai nt _hDC(S24. m _hDi spl ay, pDC- >Get Saf eHdc());
TMG di spl ay_i mage(S24. m hDi spl ay, S24. m hDI Bl mrage, TMG _RUN) ;
TMG_ di spl ay_set _pai nt _hDC(S24. m hDi splay, 0); /* Set back */

TMG Programmer’s Manual v4.0.1 TMG _display print DIB [Windows] 76

S24.m_hPrinter is created as a display device in the usual way (a printer is a form of display):
S24. m hPrinter = TMG di spl ay_create();

See also the examples in the “Image Display Functions and Examples™ section at the start of this manual.

BUGS / NOTES
The image must always be printed in one strip - i.e. the whole image at a time.

There are no known bugs.

SEE ALSO
TMG display image, TMG display set paint hDC [Windows].

TMG Programmer’s Manual v4.0.1 TMG_display set flags 77

TMG_display_set_flags

USAGE
Terr TMG display set flags(Thandle Hdisplay, uil6 type, Tboolean state)

ARGUMENTS
Hdisplay Handle to a display structure or TMG ALL HANDLES.
type Flag type.
state Either TRUE or FALSE.

DESCRIPTION

This function sets flags in Hdisplay which are then subsequently tested on by various TMG display functions
(in particular TMG display _image).

The flags are as follows:

TMG DISPLAY IS COLOUR This flag is set automatically as appropriate by TMG display_init and
should only be read by a user application. It indicates whether the display
is colour or not.

TMG DISPLAY DIRECT This flag, set by a user application, indicates that TMG display image
should use the best method available to it that displays directly to the
display surface (i.e. directly to screen memory). For example, under
Windows, DirectDraw will be used (DCI for Windows 3.1).

TMG STRETCH This flag, set by a user application, indicates that the image should be
stretched (or scaled) to fit the display window. This is not supported
under all display environments.

TMG KEEP ASPECT This flag, when used in conjunction with TMG STRETCH, indicates that
the image should be stretched (or scaled) to fit the display window, but
that the original aspect ratio should be preserved. This is not supported
under all display environments.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets the display window referenced by ADisplay to display images as large as possible
within the window, but still preserving the aspect ratio.

TMG di spl ay_set _fl ags(hDi spl ay, TMG STRETCH | TMG _KEEP_ASPECT) ;

BUGS / NOTES
The TMG STRETCH and TMG KEEP ASPECT flags are only supported under Windows.

The TMG STRETCH flag is the default setting under MacOS. Turn it off to improve the image display rate
for images where image size and display area size are not equal.

SEE ALSO
TMG display get flags, TMG display set parameter, TMG display image.

TMG Programmer’s Manual v4.0.1 TMG _display set_font [DOS] 78

TMG_display_set_font [DOS]

USAGE
Terr TMG display set font(Thandle Hdisplay, uil6 font)

ARGUMENTS
Hdisplay Handle to a display.
font Font type - one of the following:
TMG FG _6X7
TMG FG _8X8
TMG FG 8X14
TMG FG 8X16
TMG FG _15X19
DESCRIPTION

This function sets the size of the font in preparation for using TMG display draw text [DOS]. For any
complex font display application, is it recommended that the Flash Graphics library is called directly.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example for TMG display draw text [DOS].

BUGS / NOTES

This function requires the Flash Graphics library and is only supported under DOS with a VESA compatible
graphics driver. Please refer to the Flash Graphics manual for more information.

Greater control of over the fonts (such as custom fonts) is provided by the Flash Graphics library and direct
calls can be made from applications using the TMG library. For further details see the Flash Graphics
manual.

There are no known bugs.

SEE ALSO
TMG display draw text [DOS].

TMG Programmer’s Manual v4.0.1 TMG_display set hWnd [Windows] 79

TMG_display_set_hWnd [Windows]

USAGE
Terr TMG display set hWnd(Thandle Hdisplay, HWND hWnd)

ARGUMENTS
Hdisplay Handle to a display.
hWhnd Handle to a window.
DESCRIPTION

This function sets Hdisplay’s internal window handle, that is subsequently used by TMG _display_image to
know into which window to display images.

This function is rarely needed, because TMG_display_init takes the appropriate window handle as parameter.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
HAWND hwhd1;

TMG di spl ay_set _hwid(hDi spl ay, hwd1):

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display init, TMG display set hWnd [Windows].

TMG Programmer’s Manual v4.0.1 TMG_display set mask [MAC] 80

TMG_display_set_mask [MAC]

USAGE
Terr TMG display set mask(Thandle Hdisplay, RgnHandle hRegion)

ARGUMENTS

Hdisplay Handle to a display.

hRegion Region Handle containing a single bit mask.
DESCRIPTION

This function allows a pass-through mask to be set for the display. Only at the pixels where the mask is set to
1 will the video be displayed to the Mac Display. This offers users the ability to set overlays or non-
rectangular windows through which the video can be displayed.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

SEE ALSO
TMG display create.

TMG Programmer’s Manual v4.0.1 TMG_display set paint hDC [Windows] 81

TMG_display_set_paint_hDC [Windows]

USAGE
Terr TMG display set paint hDC(Thandle Hdisplay, HDC hDC)

ARGUMENTS

Hdisplay Handle to a display.

hDC Handle to a device context.
DESCRIPTION

This function sets the device context in preparation for using TMG display _image or
TMG display print DIB [Windows].

The device context is normally derived internally to TMG display image (and released on exit), but
occasionally it is necessary to set a specific device context - for example, when a pointer to a specific device
context is passed into the OnDraw function in the view class (using Microsoft Visual C++). When setting the
device context, it is important to “release it” from the TMG library when finished displaying (or printing) by
calling TMG display set paint hDC with an hDC of 0.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
See the example for TMG display print DIB [Windows].

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display print DIB [Windows], TMG display get paint hDC [Windows].

TMG Programmer’s Manual v4.0.1

TMG display set parameter 82

TMG_display_set_parameter

USAGE

Terr TMG display set parameter(Thandle Hdisplay, uil6 parameter, ui32 value)

ARGUMENTS
Hdisplay Handle to a display structure.
parameter Parameter type.
value The actual value passed in as a 32 bit unsigned integer (although some parameters will only
be 16 bit unsigned integers).
DESCRIPTION

This function sets internal parameters in the display structure referenced by Hdisplay.

The parameters are as follows:

TMG_PIXEL FORMAT

T™MG WIDTH

TMG _HEIGHT

TMG DEPTH

TMG_FRAME MEMORY OFFSET

TMG _RASTER OP

This parameter is set automatically by TMG display_init and should
only be read by a user application. It represents the pixel format of
the display and has the same values as the image pixel formats, for
example TMG_RGBI16. Pixel formats are type uil6. For a complete
list of pixel formats see the section “Pixel Formats and Return
Types” at the start of this manual.

This parameter is set automatically by TMG display_init and should
only be read by a user application. It represents the width in pixels
of the display. Also known as horizontal resolution. This parameter
is type uil6.

This parameter is set automatically by TMG display_init and should
only be read by a user application. It represents the height in pixels
of the display. Also known as vertical resolution. This parameter is
type uil6.

This parameter is set automatically by TMG display_init and should
only be read by a user application. It represents the depth in bits of
the display - in other words the number of bits per pixel. For
example the pixel format TMG RGBI15 has depth 15. This
parameter is type uil6.

This parameter is set from a user application and represents the
memory offset from a graphics card’s base address to the actual start
of image memory. This is only supported under Windows 3.1 with
the TMG DISPLAY DIRECT flag and with no DCI present. Often
the memory offset is 16Mbytes (0x800000L). This parameter is type
ui32.

This parameter is set from a user application and represents the
raster operation that may be performed at the same time as
displaying the image. This is only supported under Windows 3.1
with a suitable PCI graphics card, the TMG _DISPLAY DIRECT flag
set and with no DCI present. Raster operations include
lateral/vertical inversions etc - see TMG _display direct w31
[Windows 3.1]. This parameter is type ui32.

TMG Programmer’s Manual v4.0.1 TMG_display set parameter 83

TMG DISPLAY DIRECT CAPS This parameter is set automatically by TMG display_init and should
only be read by a user application. It represents the DirectDraw
capability flags as defined in the DirectDraw specification (DCI for
Windows 3.1). This is only supported under Windows. This
parameter is type ui32.

Note that the width, height and depth represent the dimensions of the overall display size and not of any

particular (child) window. Under X Windows, the dimensions represent the root window.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to determine the current graphics display depth:

TMG di splay_init(hbDi splay, GetSafeHwnd());
TRACE(“ Screen Depth = %08l x\n”, TMG di spl ay_get _paranet er (hDi spl ay,
TMG_DEPTH)) ;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display get parameter, TMG display set flags.

TMG Programmer’s Manual v4.0.1

TMG display set ROI 84

TMG_display_set_ROI

USAGE

Terr TMG display set ROI(Thandle Hdisplay, Tparam mode, il6 *roi)

ARGUMENTS
Hdisplay Handle to a display structure.
mode Required mode - TMG _ROI INIT or TMG _ROI SET.
roi ROI array with four elements, with #defined element names:
ASL ROI X START Horizontal start position of ROI (0 = left of region).
ASL ROI Y START Vertical start position of ROI (0 = top of region).
ASL ROI X LENGTH Horizontal width of ROL
ASL ROI Y LENGTH Vertical height of ROI.
DESCRIPTION

This function defines a ROI (Region of Interest) for the display referenced by Hdisplay. A region of interest
represents an area within the total display surface or window referenced by Hdisplay. Note that there can be
multiple display handles referencing the same display, thus making it easy to have multiple ROIs without
having to re-call the function TMG display set ROI.

The top left corner of the region is defined with the ASL ROI X START and ASL ROI Y START
coordinates and the region size defined with the ASL ROI X LENGTH and ASL ROI Y LENGTH values.

MODE PARAMETER LIST
TMG_ROI _INIT

This is the default option set by TMG display init. In this mode the ROl is set to the

whole window or display area. Thus ASL ROl X START and ASL ROI Y START
are set to zero, and ASL ROI X LENGTH and ASL ROl Y LENGTH are set to
TMG AUTO WIDTH and TMG AUTO HEIGHT respectively. The “4UTO” means
that the full width and height of the image will be displayed subject to the clipping
restraints of the window.

TMG_ROI SET

RETURNS

The roi passed in is set.

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

A typical application is to display a sub-sampled image in the foreground - say in the bottom left of the

display:

i 16 Roi [ASL_SI ZE 2D RO ;

Roi [ASL_RO _X_START]
Roi [ASL_ROl _Y_START]
Roi [ASL_RO _X_LENGTH|
Roi [ASL_RO _Y_LENGTH|

/* The display size is

TMG_di spl ay_set _RO (hDi spl ay,

/* a 4 element array */

800 x 600 -
462;

10;

128;

128;

we will set a RO of 128 x 128 */

TMG RO _SET, Roi);

This next example shows how the whole image can be displayed, but starting at a different origin:

i 16 Roi [ASL_SI ZE 2D RO ;

/* a 4 element array */

TMG Programmer’s Manual v4.0.1 TMG _display_set ROI

85

Roi [ASL_RO X START] = 462;
Roi [ASL_RO _Y_START] = 10;
Roi [ASL_ROl X LENGTH] = TMG AUTO W DTH;

Roi [ASL_RO _Y_LENGTH = TMG_AUTO HEI GHT;
TMG di spl ay_set _RO (hDi spl ay, TM5 RO _SET, Roi);

BUGS / NOTES

Under DOS, initialisation using TMG_ROI INIT actually sets the ASL ROl X START and
ASL ROI Y START parameters to TMG AUTO_ CENTRE, which automatically centres the image on the
display. This is only supported under DOS.

Also the origin is the bottom left under DOS and not the top left as it is in other operating environments.

SEE ALSO
TMG display get ROI, TMG display image.

TMG Programmer’s Manual v4.0.1 TMG _display set Xid [X Windows] 86
TMG_display_set_Xid [X Windows]
USAGE
Terr TMG display set Xid(Thandle Hdisplay, ui32 type, Window xid)
ARGUMENTS
Hdisplay Handle to a display.
type X Window type.
xid The X Window ID.
DESCRIPTION
This function sets various X Window IDs in the structure referenced by Hdisplay.
The X Window types are as follows:
TMG XID FRAME This is the X Window ID of the applications root frame.
TMG XID CANVAS This is the X Window ID of the drawable canvas associated with the frame.
TMG XID WINDOW This is the X Window ID of the display window.

The X Window IDs for the frame and canvas need to be set before TMG display_init is called, so that the

correct colourmap association can be set up.

The IDs TMG XID CANVAS and TMG XID FRAME are only needed when using Solaris 2 and Sun’s

OpenWindows and “Devguide” toolkit (no longer actively supported bu Sun).

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

See the section “Image Display Functions and Examples”.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG display_init.

TMG Programmer’s Manual v4.0.1 TMG_image calc total strips 87

TMG_image_calc_total_strips

USAGE
Terr TMG image_calc_total strips(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns the total number of strips in the image, based on the internal image parameters height and
lines_this_strip. The image height is divided by the number of lines_this_strip and rounded up to the next
whole number if necessary.

For example if an image has a height of 128 lines and lines_this_strip is set to 8, the number of strips returned
would be 16. If the height was 127, the number of strips would still be 16, but the TMG functions processing
the image would automatically change the internal parameter /ines_this_strip to 7 for the last strip. Note
therefore that this would need to be reset if repeatedly using a strip processing loop.

TMG image set parameter is used to set the lines this strip parameter. The height of the image would
normally be automatically calculated from loading the image.

RETURNS

The total number of strips in the lower 16 bits of the 32 bit return value, otherwise an error return as defined
in the Error Returns section at the start of this manual.

EXAMPLES

This example reads in a TIFF file in strips saves it as its mirror image. Note that a “dummy” read is needed
first to determine the height of the image so that the number of strips can be calculated:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);

/* The outfil enanme paranmeter gets transferred to hQutlnmage */

TMG_ i nage_set _outfil enane(hlnmage, “sky _mirror.tif”);

/* open the file to read the inmage height */
TMG_ i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG_ i nage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at tine */
TMG_ i nage_set _paraneter (hlnage, TMG LINES TH S STRIP, 8);
Total Strips = TMG i mage_cal c_total _stri ps(hl mage);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG_ i mage_r ead(hl mrage, TMG NULL, TMG RUN);
TMG I P_mirror_i mage(hl mage, hQutlnmage, TMG RUN);
TMG i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

}
TMG_ i nage_set _paraneter (hlmage, TMG LINES TH S STRIP, 8); /* just in case */

Note that if the image height of “sky.tif”” did not divide exactly by 8, the TMG LINES THIS STRIP
parameter of hlmage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

BUGS / NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.1 TMG_image calc total strips 88

SEE ALSO

TMG image_set parameter.

TMG Programmer’s Manual v4.0.1 TMG_image check 89

TMG_image_check

USAGE
Terr TMG image_check(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function performs a simple check on the image - checking that the image format and depth are
compatible. For example a TMG RGBI16 image should have a depth of 16. It also calculates Himage'’s
internal parameter bytes per line. The bytes per line parameter can be read using

TMG image get parameter with TMG BYTES PER LINE. This can be useful for accessing the image data
directly from an application.

This function is rarely needed in an application. but it is sometimes useful as a confidence check.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES
No known bugs.

SEE ALSO
TMG image get parameter.

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT destroy 90

TMG_image_conv_LUT_destroy

USAGE
Terr TMG image conv_LUT destroy(uil6 LUT type)

ARGUMENTS
LUT type A look up table type as defined below used by TMG image convert.

DESCRIPTION
This function destroys a conversion LUT selected by one of the parameters from the list below.

LUT type can be one of the following:

TMG Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG RGBI6) to an 8 bit
paletted image.

TMG YUV422 TO PALETTED LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG YUV422 TO RGBI15 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a
15 bit RGB image (TMG_RGBI5).
TMG YUV422 TO RGBI6 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a

16 bit RGB image (TMG RGBI6).
The memory used by the LUTs is freed when the LUT is destroyed.
Note that the actual LUTs are internal globals within the TMG library and not related to any other structure.

TMG image destroy(TMG ALL HANDLES) will automatically destroy all TMG structures including these
LUTs.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment destroys a previously created conversion LUT:

/* destroy the conversion LUT */
TMG_ i mage_conv_LUT_destroy(TMG_YUv422_TO RGB16_LUT);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image conv LUT generate, TMG image destroy.

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT generate 91

TMG_image_conv_LUT_generate

USAGE
Terr TMG image conv_LUT generate(Thandle Himage, uil6 LUT type)

ARGUMENTS

Himage Handle to an image.

LUT type A look up table type as defined below and used by TMG image convert.
DESCRIPTION

This function generates the appropriate LUT for use by the function TMG image convert when it is used
with the flag TMG USE LUT. If the relevant LUT has not been generated, the first call to

TMG image convert will automatically generate the LUT. The function TMG image conv LUT generate
is sometimes useful to generate the LUT in advance of actually performing the conversion.

LUT type can be one of the following:

TMG Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG RGBI16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG _RGBI16) to an 8 bit
paletted image.

TMG YUV422 TO PALETTED LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG YUV422 TO RGBI15 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a
15 bit RGB image (TMG RGBI5).
TMG YUV422 TO RGBI6 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a

16 bit RGB image (TMG _RGBI6).
The memory used by the LUTs is dynamically allocated when the LUT is generated.

Under Windows 3.1, the 15 and 16 bit YUV 4:2:2 LUTs are each 64K in size. Under true 32 bit memory
models (all other operating systems), the 15 and 16 bit output LUTs are 1 Mbyte in size, resulting in better
quality colour conversion. The YUV 4:2:2 to paletted LUT is always 32K in size under all memory models.

When generating a LUT for conversion to a paletted image, Himage must contain the desired palette. For
non-paletted conversion LUTs, Himage is not used (but it still needs to be a valid image). See
TMG cmap_generate for details on creating palettes (or colourmaps)

The LUTs used by the conversion function, TMG image convert, are not related to the “TMG _LUT” suite of
functions. The LUTs are internal globals within the TMG library and not related to any other structure. Note
also that all of the above LUTs can be used in parallel - they are all independent of each other.

TMG image conv_LUT destroy can be used to destroy any specific conversion LUT(s) that have be
generated (i.e. to free the allocated memory - or to force their regeneration).

TMG image destroy(TMG ALL HANDLES) will automatically destroy all TMG structures including these
LUTs.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT generate 92

EXAMPLES

The following code fragment generates the conversion LUT for converting YUV 4:2:2 data to the 16 bit RGB
format (TMG RGBI6) in advance of using the function TMG image convert (for example when the
application is first started):

/* Generate the LUT */
if (ASL_is_err(TMG i nage_conv_LUT generate(H nage, TMG YUV422 TO RGB16_LUT)))
printf(“Failed to generate LUT");

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG image convert, TMG image conv LUT destroy, TMG image conv LUT save,
TMG image conv LUT load.

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT load 93

TMG_image_conv_LUT_load

USAGE
Terr TMG image conv LUT load(Thandle Himage, uil6 LUT type, char *filename)

ARGUMENTS
Himage Handle to an image.
LUT type A look up table type as defined below and used by TMG image convert.
filename Pointer to a NUL terminated ASCII text string.

DESCRIPTION

This function loads a previously generated and saved LUT from a file called filename. Himage is only used
when loading a TMG Y16 TO PALETTED LUT. Himage contains the actual data width of the grayscale
data - for example, although TMG Y16 is the pixel format, there may only be 10 bits of valid grayscale data,
resulting in a corresponding LUT size of 1024.

Note that the actual LUTs are internal globals within the TMG library and not related to any other structure.
The LUT type is determined by LUT type and can be one of the following:

TMG Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG RGBI6) to an 8 bit
paletted image.

TMG YUV422 TO PALETTED LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG YUV422 TO RGBI5 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a
15 bit RGB image (TMG RGBI5).
TMG YUV422 TO RGBI6 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a

16 bit RGB image (TMG RGBI6).

The use of this function can save time in the regeneration of a LUT. (Some LUTs are quite slow to generate -
up to 20 seconds depending on the type of machine). It is also useful if an optimum colourmap (and LUT)
have been generated using a test image that may not always be available. Note the colourmap can be saved
and re-loaded with an image if a paletted file format is used (TMG PALETTED).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment generates, saves and then re-loads a colourmap and a LUT:

/* Cenerate an optimm col ourmap */
TMG _cmap_gener at e(hl mage, 256, TMG_RUN);
TMG_ i mage_conv_LUT_gener at e(hl mage, TMG YUV422_TO PALETTED LUT);

/* now save our optimm col ourmap and LUT */
TMG i mage_convert (hl mage, hPal | mage, TMG PALETTED, 0, TM5 RUN);
TMG i mage_set _outfil enane(hPal | mage, “palette.tif”);

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT load 94

TMG i mage_write(hPal | mage, TMG NULL, TMS TIFF, TMG RUN);
TMG i mage_conv_LUT_save(hPal | mage, TMG YUV422 TO PALETTED LUT, “yuv2p.lut”);

/* load our previously saved col ourmap and LUT */

TMG i mage_set _infil enane(hPal | rage, “palette.tif”);

/* we only need to read the palette - not the whole image */

TMG_ i nage_set _par anet er (hPal | mage, TMG _HEI GHT, 0);

TMG i mage_r ead(hPal | mage, TMG NULL, TMG RUN);

TMG_ i mage_conv_LUT_| oad(hPal | mage, TMG YUV422 TO PALETTED LUT, “yuv2p.lut”);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_conv_LUT save.

TMG Programmer’s Manual v4.0.1 TMG_image conv_LUT save 95

TMG_image_conv_LUT_save

USAGE
Terr TMG image conv LUT save(Thandle Himage, uil6 LUT type, char *filename)

ARGUMENTS
Himage Handle to an image.
LUT type A look up table type as defined below and used by TMG image convert.
filename Pointer to a NUL terminated ASCII text string.

DESCRIPTION

This function saves an already generated LUT to a file called filename. Himage is only used when saving a
TMG Y16 TO PALETTED LUT. Himage contains the actual data width of the grayscale data - for example
although TMG Y16 is the pixel format, there may only be 10 bits of valid grayscale data, resulting in a
corresponding LUT size of 1024.

Note that the actual LUTs are internal globals within the TMG library and not related to any other structure.
The LUT type is determined by LUT type and can be one of the following:

TMG Y8 TO PALETTED LUT Used to convert an 8 bit grayscale image to an 8 bit paletted
image.

TMG Y16 TO PALETTED LUT Used to convert a 16 bit grayscale image to an 8 bit paletted
image.

TMG RGB16 TO PALETTED LUT Used to convert a 16 bit RGB image (TMG RGBI6) to an 8 bit
paletted image.

TMG YUV422 TO PALETTED LUT Used to convert a 16 bit YUV 4:2:2 image (TMG_YUV422) to an
8 bit paletted image.

TMG YUV422 TO RGBI5 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a
15 bit RGB image (TMG RGBI5).
TMG YUV422 TO RGBI6 LUT Used to convert a 16 bit YUV 4:2:2 image (TMG _YUV422) to a

16 bit RGB image (TMG RGBI6).

The use of this function can save time in the regeneration of a LUT. (Some LUTs are quite slow to generate -
up to 20 seconds depending on the type of machine). It is also useful if an optimum colourmap (and LUT)
have been generated using a test image that may not always be available. Note the colourmap can be saved
and re-loaded with an image if a paletted file format is used (TMG PALETTED).

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See TMG image conv_LUT load for an example piece of code.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image conv LUT load.

TMG Programmer’s Manual v4.0.1

TMG image convert

96

TMG_image_convert

USAGE
Terr TMG image_convert(Thandle Hin_image, Thandle Hout image, uil6 out format, ui32 flags, uil6
TMG action)
ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
out format The required output pixel format.
flags Flags - such as TMG _USE LUT, TMG IS DIB.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be

aborted.

DESCRIPTION

This function converts the input image, Hin_image, to the output image Hout image, such that the output
image’s pixel format is defined by out format. flags is used to control the type of conversion used and/or the

type of output image generated.

This function would be used to convert the pixel format of an image to a suitable format to allow it to be

saved, displayed or processed.

Acceptable output pixel formats are listed below with a brief description. For a more detailed description of
pixel formats, see “Pixel Formats and Return Values” at the start of this manual.

TMG Y8
TMG Y16

TMG_YUV422
TMG_PALETTED
TMG RGBS
TMG_RGBI5
TMG_RGBI6
TMG_RGB24
TMG_BGR24
TMG_RGBX32
TMG_BGRX32
TMG_XBGR32
TMG_XRGB32
TMG_HSI
TMG_Y8 OR_RGB24

8 bit grayscale.

9 to 16 bits of grayscale. Actual number of grayscale bits given by the
internal parameter data_width (see TMG _DATA_ WIDTH in
TMG image set parameter).

YUV 4:2:2 colour image format.

8 bit paletted data.

8 bit colour defined as RRRGGGBB.

15 bit colour defined as RRRRRGGGGGBBBBB.
16 bit colour defined as RRRRRGGGGGGBBBBB
24 bit colour with byte ordering RGB.

24 bit colour with byte ordering BGR.

32 bit colour with byte ordering RGBX.

32 bit colour with byte ordering BGRX.

32 bit colour with byte ordering XBGR.

32 bit colour with byte ordering XRGB.

Hue, saturation and intensity representation.

This is a special “format” used to indicate that a paletted image should
converted to either TMG Y8 or TMG RGB24 - depending on whether the
paletted image is grayscale or colour. See below for details.

TMG Programmer’s Manual v4.0.1 TMG_image convert 97

Acceptable flags are listed and described below:

TMG USE LUT This flag is only valid for colourspace conversion between
TMG YUV422, RGB and Y8 to paletted formats. It indicates
that a LUT should be used instead of matrix multiplication. A
LUT is faster but the quality of conversion is not as good.

TMG IS DIB This flag indicates that image data in the output image should be
in the DIB format based on the selected pixel format, out format.
This is used when the output image is to be displayed an a DIB
image (i.e. under Windows NT/95/3.1).

0 Anything else, i.e. no special flag required.

The various types of conversion are listed below:

SIMPLE PIXEL FORMAT CONVERSION

This is the simplest group of conversions and refers to conversion between pixel formats without colourspace
conversion or any other flags used. For example conversion from TMG Y8 to TMG RGBI6 to suit a
particular graphics card, or from TMG RGBX32 to TMG _RGB24 so that the image can be saved as a TIFF
file. See “Simple Pixel Format Conversion” in the examples section below.

The formula used for conversion between colour RGB formats and grayscale is:
Y =0.299R +0.587G +0.114B

The formula used for conversion between colour RGB formats and CMYK is:

C=255-R
M=255-G
Y=255-B
K=0

COLOURSPACE CONVERSION

This refers to any conversion either to or from TMG YUV422. This format is a different colourspace (see
Glossary for definition) and requires the use of either multiplication to achieve full resolution or a LUT to
achieve reduced resolution. This type of conversion is usually needed from 7TMG YUV422 to an RGB format
- for example acquisition from a colour frame grabber or JPEG decompression hardware. Conversion is
rarely needed from RGB colourspace to YUV colourspace. Hence any conversion from RGB (or TMG Y8)
colourspace to TMG YUV422 will always use the (slow but accurate) matrix multiplication method. See
“Conversion to YUV 4:2:2” in the examples section below. The conversion from TMG YUV422 to RGB
colourspace has the option of using matrix multiplication or a software LUT. To do the conversion using a
LUT, flags is set to TMG_USE LUT. If the conversion LUT is not already generated it will be automatically
generated the first time the function is called (see TMG image conv LUT generate). The size of this LUT
(and hence the quality) vary slightly between operating systems (see “Operating System Issues” at the start of
this manual).

When converting from 7TMG YUV422 to a paletted image, the required palette must be set up in advance of
the LUT generation. This is because the LUT generation function needs to know the target colourmap (or
palette) in advance, so it knows what colours (actually indexes into the colourmap) that the input YUV 4:2:2
data should be mapped to. See “Conversion from TMG YUV422 to Paletted” in the examples section below.

For a detailed example of YUV 4:2:2 to paletted conversion, see the extended examples in the “Sample
Applications” section for more details. For conversion from YUV 4:2:2 to RGB formats, see “Conversion
from YUV422” in the examples section below.

TMG Programmer’s Manual v4.0.1 TMG_image convert 98

The formula used for conversion from RGB formats to YUV 4:2:2 is as follows:

Y =0.299R +0.587G + 0.114B
U=-0.169R-0.331G + 0.500B
V=0.500R-0.419G - 0.081B

The formula used for conversion from YUV 4:2:2 and RGB formats is as follows:

R=Y+0U~+1402V
G=Y-0344U-0.714V
B=Y+1.772U+ 0V

In both of the above formulas, R, G, B and Y all have the range 0..255, whilst U and V have the range -128 to
+127. (The U and V components are level shifted by adding 128 to allow them to be stored as an 8 bit
unsigned number.)

There is also limited support for HSI colourspace. See BUGS / NOTES below. The formulas used to
convert from YUV 4:2:2 to HSI are:

H=tan-1(B-Y)/(R-Y) (Implemented using the Chroma keying UV _to_hue LUT.)
Note: Small values (noise) are trapped in the LUT and set to 180 degrees.

S =255 -MIN(R,G,B) (Simple approximation.)

I=Y

See also TMG SPL _HSI to RGB pseudo colour.

PALETTED (COLOURMAPPED) CONVERSION

This refers to any conversion either to or from TMG PALETTED. For conversion from a paletted image, the
output image format should be TMG Y8 OR_RGB24. This is a special format, that isn’t really a pixel
format, but a way of instructing the conversion function that it should convert to either TMG Y8 or

TMG RGBZ24 depending on whether the paletted image is grayscale or colour. (It determines this
automatically during conversion.) See “Conversion from Paletted” in the examples section below.

To convert to a paletted image involves the generation of a colourmap (or palette) first of all. This can be
done several ways using the TMG colourmap (“TMG cmap’) functions (see TMG cmap generate and
related).

The conversion from TMG _YUV422 to paletted always uses a LUT and is described in the “Colourspace
Conversion” section above. See “Conversion from TMG _YUV422 to Paletted” in the examples section
below.

A LUT can also be used to convert directly from TMG Y8, TMG Y16 or TMG RGB16 to TMG PALETTED.
This is useful for fast display to paletted displays. This methodology is used extensively in the Snapper
Solaris SDK. See “Conversion from TMG Y8 to Paletted - using a LUT” in the examples section below.
Note that given suitable acquisition hardware, the grayscale to paletted conversion LUT could be loaded into
a hardware LUT thus saving time in paletted conversion.

There is an alternative method to using a LUT, suitable for TMG Y8 and TMG RGB24. The algorithm is
based upon generating an optimum palette, then mapping each input pixel to its closest colour in the palette.
For TMG Y8 the quality is the same as the LUT method but the conversion takes marginally longer. For
TMG RGBZ24 this is the only method of directly generating a paletted image. See “Conversion from

TMG RGBZ24 to Paletted” in the examples section below.

CONVERSION TO DIB

If the flag TMG IS DIB is used during image conversion, the output image format will be a DIB (device
independent bitmap). This is a one way process - there is currently no function to convert from a DIB back to
an ordinary TMG image. This conversion is designed to be used for display and printing under the
appropriate operating systems (Windows NT/95/3.1). See “Conversion to DIB” in the examples section
below.

TMG Programmer’s Manual v4.0.1 TMG_image convert 99

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

SIMPLE PIXEL FORMAT CONVERSION

This example shows how to convert between simple pixel formats in the same (RGB) colourspace:

/* hSrclmage is a TMG RGBX32 image, we will convert it to TMG RGBL16,
* ready for display (the display is format RGB16).

* Note we are processing in 1 strip (i.e. whole inage at once).

>/

TMG_i nage_convert (hSrcl nage, hDi spl mnage, TMG RGB16, 0, TMG RUN);

CONVERSION TO YUV 4:2:2

This example shows how to convert from RGB colourspace to YUV colourspace:
TMG_ i mage_convert (hSrcl mage, hYWVI mage, TM5 YW422, 0, TMG RUN);

For a more detailed example, see the chroma keying examples in the “Sample Applications” section.

CONVERSION FROM YUYV 4:2:2 TO RGB16 - WITHOUT A LUT

/* Sl ow but accurate */
TMG_i mage_convert (hYUVI nage, hRGBI mage, TMG RGB16, 0, TMG RUN);

CONVERSION FROM YUYV 4:2:2 TO RGB16 - USING A LUT

/* Fast but |ess accurate */
TMG i mage_convert (hYUVI mage, hRGBI mage, TM5 RGB16, TM5 USE LUT, TMG RUN);

CONVERSION FROM YUYV 4:2:2 TO PALETTED

This example shows how to convert from YUV 4:2:2 to a paletted image using, such that the palette is made
up of 3 bits of red, 3 bits of green and 2 bits of blue:

/* map to an equal mx of red, green. blue */

TMG _cnap_set _type(hYUVI mage, TMG 332_RGB);

/* force the generation of a new LUT within TMG.i mage_convert */
TMG_i nage_conv_LUT_destroy(TMG YUVv422 TO PALETTED LUT);

/* the first call will be slower - as its generating the LUT */
TMG_ i nage_convert (hYUVI nage, hPal | rage, TMG PALETTED, TMG USE LUT, TMG _RUN);

For a more detailed example, in which certain colours are reserved and optimum colourmap generation, see
the extended examples in the “Sample Applications™ section.

CONVERSION FROM PALETTED

This example shows how to convert from a paletted image to either an RGB or grayscale one:

TMG i mage_set _infil ename(hSrcl nage, “sky.tif”);

TMG_ i nage_set _par anet er (hSrcl mage, TMG _HEI GHT, TMG _AUTO_HEI GHT) ;

TMG i mage_r ead(hSrcl mage, TMG NULL, TMG RUN);

if (TMG_i mage_get _paraneter(hSrcl mage, TMG Pl XEL_FORMAT) == TMG_PALETTED) ({
printf(“\nConverting frompaletted...”);
TMG i mage_convert (hSrcl mage, hlmage, TMG Y8 _OR _RGB24, 0, TM5 RUN);

}

el se
TMG i mage_nove(hSrcl mage, hl mage);

TMG Programmer’s Manual v4.0.1 TMG_image convert 100

Pi xel Format = (ui 16) TMG_ i mage_get _par anet er (hl mage, TMG Pl XEL_FORVAT) ;
if (Pixel Format == TMG RGB24)

printf(“\nWe have a 24 bit col our inage”);
el se

printf(“\nWe have a grayscal e i mage”);

CONVERSION FROM GRAYSCALE TO PALETTED - USING A LUT

This example shows how to convert from 7TMG Y8 to TMG PALETTED:

/* set colourmap to a grayscale ranp */

TMG cnap_set _type(hYl nmage, TMG GRAYSCALE_ RAMP) ;

/* force the generation of a new LUT within TMG.i mage_convert */
TMG_i nage_conv_LUT _destroy(TMG Y8 _TO PALETTED LUT);

/* the first call will be slower - as its generating the LUT */
TMG_ i nage_convert (hYl nmage, hPal | mage, TMG PALETTED, TMG USE LUT, TMG RUN);
CONVERSION FROM RGB24 TO PALETTED

This example shows how to convert from 7MG RGB24 to a paletted image, such that the palette is optimised
to the colours contained in the source image:

/* generate the optinmum col ourmap */

TMG_cnap_gener at e(hRGBI mage, 256, TMG _RUN);

TMG_ i mage_convert (hRGBI mage, hPal | mage, TM5G PALETTED, 0, TMG RUN);
CONVERSION TO DIB

This example shows how to convert to a DIB suitable for display:

/* 24 bit colour DI Bs use the BCGR24 pixel format */
TMG_i nage_convert (hRGBI nage, hDI Bl mage, TMG BGR24, TMG IS DIB, TMG RUN);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

Not all combinations of image format conversions are supported. If you come across an unsupported
conversion option which you require please fax in the Bug Report Form (in the Appendices to this manual)
and it will be fixed in the next release (or sooner via the Bulletin Board System).

There is limited support for TMG YI16.
The conversion to DIB only generates DIBs with pixel format TMG BGR24.
There’s limited support for TMG _HSI. The only conversion option is to TMG HSI from TMG _YUV422.

Dithering is currently not supported as a conversion flag option.

SEE ALSO

TMG image _conv LUT generate, TMG image conv LUT destroy, TMG cmap_generate,
TMG SPL HSI to RGB pseudo colour.

TMG Programmer’s Manual v4.0.1 TMG_image copy 101

TMG_image_copy

USAGE
Terr TMG image_copy(Thandle Hin_image, Thandle Hout image)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
DESCRIPTION

This function copies the image, consisting of various parameters and the image data itself, from Hin_image to
Hout image. 1f Hout image has any image data associated with it and it is not locked (see

TMG image_set flags), it is freed and new memory is allocated for the image. If the image memory in

Hout image is locked, then it will be preserved and the image data from Hin_image is copied to this area in
Hout image. Note that there must be sufficient memory already allocated in Hout image if it is locked,
otherwise a general protection fault or similar will occur.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

This example reads in a TIFF file in strips, copies it and saves it. Note thata “dummy” read is needed first to
determine the height of the image so that the number of strips can be calculated:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_copy.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMS RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG_ i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);
TMG i mage_copy(hl mage, hCut | mage);
TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);

}
TMG i nage_set _paraneter (hl mage, TMG LINES TH S STRIP, 8); /* just in case */

Note that if the image height of “sky.tif” did not divide exactly by 8, the TMG LINES THIS STRIP
parameter of ~/mage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

BUGS / NOTES

There are no known bugs.

TMG Programmer’s Manual v4.0.1 TMG_image copy 102

SEE ALSO
TMG image_move.

TMG Programmer’s Manual v4.0.1 TMG_image create 103

TMG_image_create

USAGE
Terr TMG image_create()

ARGUMENTS

None.

DESCRIPTION

This function creates a Timage structure by the use of malloc, and returns a handle to that Timage structure.
(see the file “tmg.h” for the actual structure definition). It also performs some initialization - that is characters
strings are set to \0” and the image data pointer set to NULL. The structure variable lines_this_strip is set to
8. Note that no memory is created for the image itself - this is performed by TMG functions when loading or
processing an image.

RETURNS

On success a valid handle is returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates an image and gets a handle to it:
Thandl e hl mage; /* Handle to an image structure */

if (ASL_is_err(hlmage = TMG_ i mage_create())
printf(“Failed to create an inmge”);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_destroy, TMG JPEG image_create.

TMG Programmer’s Manual v4.0.1 TMG _image destroy 104

TMG_image_destroy

USAGE
Terr TMG image_destroy(Thandle Himage)

ARGUMENTS
Himage Handle to an image or TMG _ALL HANDLES.

DESCRIPTION

This function destroys an image structure (including JPEG images) by freeing all the memory associated with
that structure.

If the parameter TMG ALL HANDLES is used, all TMG structures are destroyed and their associated handles
freed. Note that not only are all images destroyed but all other TMG structures too - that is LUTs, chroma
keying structures etc. This is a convenient way of destroying everything with just one function call - usually
on program exit.

Any images with locked memory (TMG LOCKED) will have that memory automatically freed prior to the
image being destroyed.

Care must be taken if another application is using the TMG library in a multi-threaded environment. For
example, it may be using some TMG LUT structures, and the use of TMG ALL HANDLES would destroy
these without the other application knowing about it. In this type of environment, each application would
destroy only its own image handles and then call TMG image destroy with the parameter

TMG ALL DATA STRUCTURES. This would destroy the data structures only if there were no image
handles in use (and then return ASL OK), otherwise, if there were image handles in use, it would return
ASL ERR IN PROGRESS.

Care must also be taken with memory that has been allocated by the application and not the TMG library. If
memory has been allocated by the application and used by the TMG library (in an image structure), it must be
freed at the application level and the internal image pointer set to NULL before calling TMG image_destroy.
One of the examples below shows how this is done.

RETURNS
ASL _OK or ASL_ERR IN PROGRESS (see above).

EXAMPLES

The following code destroys a previously created image:
Thandl e hl mage;

/* Destroy the inmage structure */
TMG_i nage_dest roy(hl mage) ;

/* Destroy all TMG structures */
TMG_ i nage_dest roy(TMG_ALL_HANDLES) ;

This next example shows how image memory is allocated and destroyed at the application level and not in the
TMG library:

Thandl e hl mage;
IM U 8 *plmageMenory; /* “ny” inage nenory */

hl mage = TMG_ i nage_create();

pl mageMenory = mal | oc(100000) ;

TMG_ i mage_set _ptr(hl mage, TMG | MAGE_DATA, pl nmageMenory);
TMG i mage_set _fl ags(hl mage, TMG LOCKED, TRUE);

TMG Programmer’s Manual v4.0.1 TMG _image destroy 105

/* W now have hl mage using our nenory that the TMG library will not touch */

/* To destroy it we nust free it and set the pointer to NULL */
free(pl mageMenory) ;

TMG i nage_set _ptr (hl mage, TMG | MAGE_DATA, NULL);

TMG i mage_set _fl ags(hl mage, TMG LOCKED, FALSE);

TMG i mage_dest roy(hl mage) ;

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image create, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG_image find file format 106

TMG_image_find_file_format

USAGE
Terr TMG image find file format(char *filename)

ARGUMENTS

filename Name of an image file.

DESCRIPTION

This function attempts to find the file format of an image file called filename. This function is used internally
by TMG _image read.

RETURNS

On success one of the following file types is returned as a #define: TMG TIFF, TMG TARGA,
TMG JPEG, TMG EPS, TMG BMP; otherwise an error return as defined in the Error Returns section at
the start of this manual.

EXAMPLES

The following code fragment attempts to find the image file format:

ui 32 dwResul t;
ui 16 wFi | eFormat = 0O;

Result = TMG inage_find file_format(“sky.tif”);
if (ASL_is_err(dwResult))

printf(“Failed to recognise the file type”);
el se

wWFi | eFormat = ASL_get _ret (dwResul t);

if (WFileFormat == TMG Tl FF)
printf(“The file is a TIFF file");

BUGS / NOTES

This function is not guaranteed to work on image files that have not been generated by the TMG library (but
in general it should work).

SEE ALSO
TMG image_read.

TMG Programmer’s Manual v4.0.1 TMG_image free data 107

TMG_image_free_data

USAGE
Terr TMG image_free_data(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function frees the image data used internally by Himage. This may include raw image data or JPEG
compressed data. If the memory is locked (i.e. the TMG LOCKED flag is set to true), freeing the data will
have no effect (but ASL_OK will still be returned as this is not regarded as an error).

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment, lifted from the Windows 3.1 application D16, frees the device dependent
bitmap to save memory:

if (D16. m bModeChange == TRUE)

{
/* Free the inmage nenory associated with the DDB i mage to save nenory */
TMG i mage_set _fl ags(D16. m hDDBI nage, TMG LOCKED, FALSE);
TMG_ i mage_free_dat a(D16. m hDDBI nage) ;
}
BUGS / NOTES

This function is rarely needed is a user application.

SEE ALSO
TMG image malloc_a_strip, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG_image get flags

108

TMG_image_get_flags

USAGE
Thoolean TMG image get flags(Thandle Himage, uil6 type)

ARGUMENTS
Himage Handle to an image.
type Flag type.
DESCRIPTION

This function returns the state (TRUE or FALSE) of the flag, selected by type, in Himage.
The flag types are described in TMG image set flags.

RETURNS
TRUE or FALSE reflecting the flag status.

EXAMPLES

The following code shows how a file is read then tested to see if its a JPEG file:

TMG i mage_set _par anet er (hSrcl mage, TMG _HEI GHT, TM5 _AUTO_HEI GHT) ;
if (TMG.i mage_read(hSrclmage, NULL, TMG RUN) !'= ASL_OK) ({
printf(“Failed to read file");
}
if (TMG.i mage_get _flags(hSrclmage, TMG IS JPEG == TRUE)
/* deconpress the imge */

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_set flags, TMG image convert, TMG image set parameter.

TMG Programmer’s Manual v4.0.1 TMG_image get infilename, 109
TMG image get outfilename

TMG_image_get_infilename,
TMG_image_get_outfilename

USAGE
char *TMG image get infilename(Thandle Himage)
char *TMG image get outfilename(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

These functions return a pointer to the input/output file name associated with Himage. The pointer returned
may point to relocatable memory in the image structure, therefore the contents should be copied to memory
within the application.

The file name may also contain a full path to the file - for example “c:\snapsdk\apps\imv\test.tif”.

RETURNS

A pointer to a NUL terminated string if Himage is valid, otherwise it returns NULL.
EXAMPLES
char szFi | eNane[256] ;
TMG i mage_set _infil ename(hl mage, “sky.tif”);
.st rcpy(szFil eNane, TMG i mage_get _i nfil ename(hl mage));

printf(“File = %", szFileNane);

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG image_set_infilename,
TMG image_set outfilename.

TMG Programmer’s Manual v4.0.1 TMG_image get parameter

110

TMG_image_get_parameter

USAGE
ui32 TMG image get parameter(Thandle Himage, uil6 parameter)

ARGUMENTS
Himage Handle to an image.
parameter Parameter type.
DESCRIPTION

This function returns the value of an internal parameter from Himage selected by parameter. The parameter
is always returned as a 32 bit unsigned integer although some of the parameters are stored as 16 bit unsigned

integers internally.

The parameter types are described in TMG image set parameter, apart from the read only parameter
TMG LIBRARY REV LEVEL. This parameter returns the revision level of the library as a 5 digit number
which represents major.minor.sub-minor. For example 32002 means version 3.2 rev. 2. This is useful to

check that the correct revision level of DLL is present.

RETURNS

The parameter selected by parameter as an unsigned 32 bit integer (ui32).

EXAMPLES
The following code fragment reads a file and detects whether its a 24 bit colour image:

ui 16 Pi xel Format ;

TMG i mage_set _infil ename(hl mage, “car.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
Pi xel Format = (ui 16) TMG_ i mage_get _par anet er (hl mage, TMG Pl XEL_FORVAT) ;
if (Pixel Format == TMG RGB24)
printf(“lts a 24 bit col our inmage”);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_set parameter, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG image get ptr 111

TMG_image_get_ptr

USAGE
void *TMG image get ptr(Thandle Himage, uil6 type)

ARGUMENTS

Himage Handle to an image.

type The pointer type (see list below).
DESCRIPTION

This function returns the internal pointer selected by #ype, in the image structure referenced by Himage. The
return value must be cast to the required pointer type (shown below).

TMG IMAGE DATA and TMG JPEG DATA are the most likely ones to be used. The remainder are
implemented for internal library use (and completeness).

Getting access to the image data via a pointer can be a useful way of reading and setting individual pixels.
See the “Sample Application” sections in this manual.

The possible pointer types are as follows:

TMG IMAGE DATA Returns the pointer to the raw image data. The return value should
be cast to /M UIS8*, IM Ul16* or IM _UI32*.

TMG JPEG DATA Returns the JPEG compressed data pointer. The return value should
be cast to /M UI8*.

TMG JPEG CURRENT PTR Returns the current pointer to JPEG data. (This is used for the replay
of motion JPEG sequence files.) The return value should be cast to
IM UIS*.

TMG _CMAP_STRUCT Returns the pointer to the colourmap structure (struct Tcmap*).

Under Windows 3.1 the structure definition is struct Tcmap far*.
(There is a type defined as CMAP PTR* that automatically includes
the far keyword when appropriate). The return value should be cast
to CMAP _PTR*.

TMG PIMAGE STRUCT Returns the pointer to the image structure. The return value should
be cast to struct Timage*.

TMG PIMAGE PJPEG STRUCT Returns the pointer to the JPEG structure. The return value should
be cast to struct Tjpeg™.

See the section on “Operating System Issues” for a fuller description of defined types such as IM_UIS. See
also the file “tmg.h” for the actual structure definitions mentioned above.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code gets a pointer to the actual image data in a TMG image:

Thandl e hl mage;
IM U 8 *pl mageMenory; [/* “ny

i mge nenory */

hl mage = TMG_ i nage_create();
.. /* Read in an inmage fromdisk for exanple */
pl mageMenory = (I M. U 8*) TMG i mage_get _ptr(hl mage, TMG | MAGE_DATA) ;

TMG Programmer’s Manual v4.0.1 TMG image get ptr 112

/* \W now have pl mageMenory pointing at the start of our inmage data, so we can
mani pul ate it directly */

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image set flags, TMG image set ptr.

TMG Programmer’s Manual v4.0.1 TMG_image is_colour 113

TMG_image_is_colour

USAGE
Thoolean TMG image_is_colour(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

Returns TRUE if the image is colour and FALSE if it is grayscale or bilevel (i.e. line art - 1 bit per pixel).
Note that this function will return FALSE if the image is paletted and the colourmap (or palette) consists only
of grayscales.

RETURNS
Returns TRUE or FALSE.

EXAMPLES

The following code fragment reads an image and determines if it is colour or not:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
if (TMG_image_i s_col our (hl mage) == TRUE)
printf(“We have a col our inmage”);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG cmap_is grayscale, TMG image get parameter.

TMG Programmer’s Manual v4.0.1 TMG image malloc a strip 114

TMG_image_malloc_a_strip

USAGE
Terr TMG image _malloc_a_strip(Thandle Himage)

ARGUMENTS

Himage Handle to an image.

DESCRIPTION

This function allocates sufficient memory for one strip of the image currently being processed. The amount
of memory allocated is determined by two parameters internal to the image structure - byfes per line and
lines_this_strip. If lines_this_strip is set the height of the image, then the image will be processed in one
strip. The function TMG _image checkcalculates and fills in bytes per line from the pixel format and width
of the image.

The method used for memory allocation varies between the different operating systems. For example,
Solaris 2 uses memalign. The #defines MALLOC and FREFE are used internally in the TMG library and are
defined in the file “asl gen.h” available with the SDK - please refer to this file for more details.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the “Test Pattern Generation” example in the extended examples section in the “Sample Applications”
section.

BUGS / NOTES

This function is rarely needed is a user application.

SEE ALSO
TMG image free data, TMG image set parameter, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG_image move 115

TMG_image_move

USAGE
Terr TMG _image_move(Thandle Hin_image, Thandle Hout image)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
DESCRIPTION

This function copies the image parameters and moves the data (i.e. the pointer is copied) from Hin_image to
Hout image. The internal data pointer in Hin_image is set to NULL.

If either the input or output image has locked memory, then this function will fail - as locked memory cannot
be freed or moved. Generally the application should be written not to use this function with locked memory
(in fact not to use this function at all if possible - but sometimes it is useful). Alternatively TMG image copy
can be used to copy from locked memory to locked/unlocked memory. However in speed critical applications
it wastes time to copy image data around and the application should be re-structured so as not to have to do
this.

Obviously this function is much faster than TMG image copy as the data is simply moved - in fact the time
taken to perform the move is insignificant in an application, but the time taken to copy generally is significant.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

This example reads in a TIFF file in strips, moves it and saves it. Note that a “dummy” read is needed first to
determine the height of the image so that the number of strips can be calculated:

TMG i mage_set _i nfil ename(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_copy.tif”);

/* open the file to read the image height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG_ i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++)

{

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG i mage_nove(hl mage, hCut | mage) ;

TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}

TMG i nage_set _paraneter (hl mage, TMG LINES TH S STRIP, 8); /* just in case */

Note that if the image height of “sky.tif” did not divide exactly by 8, the TMG LINES THIS STRIP
parameter of ~/mage will no longer contain 8 and may in applications different to this example need setting
back to 8 - hence the “just in case” comment at the end.

TMG Programmer’s Manual v4.0.1 TMG_image move 116

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image copy, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG image read 117

TMG_image_read

USAGE
Terr TMG image_read(Thandle Hin_image, Thandle Hout image, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to an optional output image.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function reads an image from disk or memory. If reading from disk, the function is called with

Hout image set to TMG NULL. TMG image read uses TMG image find file format internally to
determine the image file format. The supported file formats are TIFF, Windows Bitmap, Targa, Encapsulated
PostScript and JPEG/JFIF. (Note that JPEG/JFIF files are only read in, TMG JPEG decompress is required
to decompress them.)

This function will read an image in strips or as one whole strip (i.e. the whole image). When reading the
whole image at once, the height of the image should be set to TMG AUTO_HEIGHT. When reading in
strips, the internal image parameter lines_this_strip is set as usual. (See example below.)

The purpose of reading image data from memory - i.e. from Hin_image to Hout image, would be to read
strips of Hin_image at a time (say 8 lines per strip) to conserve memory for a chain of image processing
functions.

The concept of strips does not directly apply to reading JPEG data. Therefore if the input file is a JPEG file,
the complete image will always be read, unless the TMG LINES THIS STRIP parameter set in the input
image (see TMG image set parameter) is zero - in which case the JPEG file will be opened (using

TMG JPEG file open) and then closed after the image dimensions etc have been be read. This will all
happen internally to TMG image read.

When reading non-JPEG files, the only three possible pixel formats in the resulting image are TMG Y8 for
grayscale, TMG RGB24 for colour and TMG PALETTED for a paletted image. (Note that the paletted image
may actually be grayscale - see TMG cmap _is_grayscale and TMG _image convert.)

Internally TMG _image_read calls the following file read functions:

TMG read from_memory(Thandle Hin_image, uil6 TMG action)
TMG read TIFF file(Thandle Hin_image, uil6 TMG action)

TMG read EPS file(Thandle Hin_image, uil6 TMG action)
TMG read TGA_file(Thandle Hin_image, uil6 TMG action)

TMG read BMP file(Thandle Hin image, uil6 TMG action)

TMG JPEG file read(Thandle Hin image)

It is recommended that the TMG image read function is used, as it provides a simple common interface.
However applications linked with static libraries may prefer to use the individual function calls, to reduce the
size of the resulting executable.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

TMG Programmer’s Manual v4.0.1 TMG_image read 118

EXAMPLES

The following code fragment reads a TIFF file (the whole image in one go) and displays it to a 16 bit colour
display:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG_ i mage_convert (hl mage, hDi spl mage, TMG RGB16, 0, TMG RUN);

TMG_di spl ay_i mage(hDi spl ay, hDi spl mage, TM5 RUN);

This next example reads in a TIFF file in strips and saves it as its mirror image. This strip processing
approach would be needed for very large images. Note that a “dummy” read is needed first to determine the
height of the image so that the number of strips can be calculated:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil ename(hl mage, “sky_mirror.tif”);

/* open the file to read the inmge height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG_ i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG | P_mirror_i mage(hl mage, hCQutl nmage, TMG RUN);

TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}

This final example assumes the complete image is in memory in hZFulllmage, and again it is necessary to write
the mirror image of the image to file. Because there may not be enough memory to hold the full mirrored
image, it is necessary to write it in strips:

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil ename(hFul |l I mage, “sky_mirror.tif”);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i nage_set _paraneter (hFul | | mage, TMG LINES TH S STRI P, 8);
Total Strips = TMG i nage_cal c_total _strips(hFulllmge);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_read(hFul I | mage, hStripl mage, TMG RUN);
TMG I P_mrror_i mage(hStripl mage, hQutlmage, TMG RUN);
TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}
Ful | Hei ght = TMG_ i nage_get _par anet er (hFul | | mage, TMG_HEI GHT) ;
TMG i mage_set _paraneter (hFul | I mage, TMG LINES THI S STRI P, Ful | Hei ght);

BUGS / NOTES
Of the supported TIFF and BMP formats, only uncompressed image data is supported.
Only EPS files written using TMG image write can be read. The TMG library does not have any PostScript
interpreting ability.

SEE ALSO

TMG image_set_infilename,
TMG image_set outfilename, TMG _image write, TMG JPEG file read.

TMG Programmer’s Manual v4.0.1 TMG_image set flags 119

TMG_image_set_flags

USAGE
Terr TMG image_set flags(Thandle Himage, uil6 type, Thoolean state)

ARGUMENTS
Himage Handle to an image or TMG _ALL HANDLES to select all images.
type Flag type.
state Either TRUE or FALSE.

DESCRIPTION

This function sets flags in Himage which are then subsequently tested on by various TMG functions - in
particular TMG _image_convert.

The flags are as follows:

TMG LOCKED This indicates that once the image memory (JPEG or raw) has been
allocated it will not be freed (or re-allocated) unless the image is
destroyed.

T™MG IS JPEG This is an internal flag used to indicate that the image contains JPEG data.

TMG IS DIB This indicates that the image is a DIB. This is the standard Windows DIB

structure stored in the image memory area in the image. It is also used by
TMG image_convert to indicate the output image should be a DIB.

TMG _DIB NON _INVERTED This flag indicates that the DIB is not inverted. In the original DIB
format, the image was inverted (vertically), but now increasingly DIBs
may contain the image the other (correct) way up.

TMG USE LUT This flag is used by TMG _image_convert to indicate that the colourspace
conversion from YUV 4:2:2 data to RGB data should use a LUT.

TMG HALF ASPECT This flag indicates that the image has half the usual aspect ratio - in other
words if displayed normally the image will appear squashed vertically.
This flag is usually used to indicate that the image is a single field of
video. Other routines, such as display routines, may examine this flag to
determine how to display the image.

TMG DATA STREAM This flag indicates that the data in the image structure is not formatted in
the usual way with a fixed image width and height. For example it may
simply represent a continuous stream of data - not necessarily image data.
This can be useful when used in conjunction with the Snapper acquisition
libraries for acquiring non-standard data formats.

Himage can be TMG ALL HANDLES which is sets the flag as requested in all images. This is particularly
useful to unlock all image memory prior to destroying all images.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

TMG Programmer’s Manual v4.0.1 TMG_image set flags

120

EXAMPLES

The following code shows how to lock memory in an image and also how to unlock all images:

/* Lock nenmory to save re-allocation time */
TMG i mage_set _fl ags(hl mage, TMG _LOCKED, TRUE);

/* Destroy all imges */

TMG i mage_set _fl ags(TMG ALL_HANDLES, TMG LOCKED, FALSE);
TMG i nage_dest roy(TMG_ALL_HANDLES) ;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image get flags, TMG image convert, TMG image set parameter.

TMG Programmer’s Manual v4.0.1 TMG image set infilename, 121
TMG image set outfilename

TMG_image_set_infilename,
TMG_image_set_outfilename

USAGE
Terr TMG image_set infilename(Thandle Himage, char *filename)
Terr TMG image_set outfilename(Thandle Himage, char *filename)

ARGUMENTS

Himage Handle to an image.

filename Pointer to a NUL terminated ASCII text string.
DESCRIPTION

These functions set the input/output file name of the image referenced by Himage. This input file name is
used by any file reading functions, such as TMG image_read, and the output file name is used by file writing
functions, such as TMG image write.

The input file name and the output file name are stored in separate fields within the image structure and any
TMG processing function will propagate these parameters to “downstream” functions.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads, sub-samples, then writes a TIFF file (the whole image in one go):
TMG_ i nage_set _infil enane(hl mage, “sky.tif”);
TMG_ i nage_set _outfil enane(hl mage, “sky_x2.tif");
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG_| P_subsanpl e(hl mage, hQutlnmage, 2, TMG_RUN);
TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG_image get infilename,
TMG image get outfilename, TMG_image read.

TMG Programmer’s Manual v4.0.1 TMG image set parameter 122

TMG_image_set_parameter

USAGE

Terr TMG image_set_parameter(Thandle Himage, uil6 parameter, ui32 value)

ARGUMENTS
Himage Handle to an image.
parameter Parameter type.
value The actual value passed in as a 32 bit unsigned integer (although some parameters will only
be 16 bit unsigned integers).
DESCRIPTION

This function sets internal parameters in the image structure referenced by Himage.
The parameters are as follows:

TMG PIXEL FORMAT This sets the pixel format of the image, Himage. As well as setting
the pixel format it will also automatically set the internal parameter
depth. Pixel formats are type ui/6. For a complete list of pixel
formats see the section “Pixel Formats and Return Types” at the start
of this manual. This option is rarely needed in a user application.

TMG WIDTH This parameter sets the width of an image. This would not normally
be needed in a user application.

TMG HEIGHT This parameter sets the height of an image. This would usually be
used with value set to TMG _AUTO HEIGHT for reading an image
into memory from file - see TMG image_read.

TMG DEPTH This parameter sets the depth of the image. Depth refers to the
number of bits per pixels - for example, pixel format TMG _RGBI16
would have a depth of 16. This would not normally be needed in a
user application.

TMG LINES THIS STRIP This sets the number of lines to read/process/write per iteration. If
used, a typical value would be 8. See the section “Concepts” at the
start of this manual.

TMG BYTES PER LINE This represents the number bytes from pixel 1 on line N to pixel 1 on
line N+1. It is automatically set by the function TMG image check
(used internally) and is used as an “accelerator” for processing an
image.

TMG FIELD ID This is used to indicate which field is present if the image contains
only a single field of video data (see also the TMG HALF ASPECT
flag under TMG image set flags). Valid settings are
TMG IST FIELD, TMG 2ND FIELD, TMG FRAME,

TMG FIELD 1 OR 2, TMG FRAME FIELDS 12 or
TMG FRAME FIELDS 21.

TMG NUM BYTES DATA This represents the total number of bytes of image data. It is only
valid when used with the image flag TMG DATA STREAM.

TMG JPEG NUM BYTES DATA This represents the total number of bytes of JPEG data. It is only
valid when the image contains JPEG data. When multiple JPEG
images are contained within one image handle, this represents the
total amount of data, including the restart markers between frames.

TMG Programmer’s Manual v4.0.1

TMG image set parameter 123

TMG_DATA_WIDTH

TMG_NUM_FRAMES

TMG _CURRENT FRAME

TMG_CMAP_SIZE

TMG_NUM_PLANES

RETURNS

This represents the actual number of valid bits of grayscale data. For
example, 12 bit grayscale data (acquired from say a 12 bit digital
camera) would be stored in an image with pixel format TMG Y16.
The data width would be set to 12 to inform TMG functions that
image data is represented by the least significant 12 bits of each 16
bit word.

This represents the number of frames of image data or JPEG image
data contained in Himage. It is mainly used by the motion JPEG
functions for sequence acquisition and replay.

This indicates the frame that the current data pointer is pointing to in
a sequence of frames contained in Himage. It is mainly used by the
motion JPEG functions for sequence acquisition and replay.

This is used to set the colourmap (or palette) size. By default the
colourmap size 256 - that is 256 colour entries - each defined by 24
bits of RGB. See the colourmap examples in the “Sample
Applications” section at the start of this manual.

This indicates the number of planes of data in the image. This is
calculated as follows:

TMG RGBS, TMG RGBI15, TMG RGBI6 and TMG YUV422 are
return a value of 3; TMG Y16 returns a value of 1; all other formats
return the image depth divided by 8.

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code fragment reads, sub-samples, then writes a TIFF file. It performs each step on the whole
image as determined by setting TMG HEIGHT to the special parameter TMG AUTO HEIGHT:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage,
TMG_| P_subsanpl e(hl nage,
TMG i mage_writ e(hQut | mage,

TMG_NULL, TMG RUN);
hQut | mage, 2, TMG RUN);
TMG_NULL, TMG TIFF, TMG RUN);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG image get parameter, TMG image set flags.

TMG Programmer’s Manual v4.0.1 TMG image set ptr 124

TMG_image_set_ptr

USAGE
Terr TMG image_set _ptr(Thandle Himage, uil6 type, void *ptr)

ARGUMENTS
Himage Handle to an image.
type The pointer type (see list below).
ptr The pointer itself.
DESCRIPTION

This function sets internal pointers in the structure referenced by Himage. It is most commonly used when
the application program wishes to allocate memory (for JPEG or raw image data) instead of letting the TMG
library do it. For example, the application program may want to force the TMG library to use a particular
area or type of memory (perhaps shared with another program in a driver application).

The possible pointer types are as follows:

TMG IMAGE DATA Sets the raw image data pointer.
TMG JPEG DATA Sets the JPEG compressed data pointer.
RETURNS
ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES

The following code allocates memory for image data and then destroys it in exit:

Thandl e hl mage;
IM U 8 *plmageMenory; /* “ny” inage nenory */

hl mage = TMG_ i nage_create();

pl mageMenory = mal | oc(100000) ;

TMG_ i nage_set _ptr(hl mage, TMG | MAGE_DATA, pl nmageMenory);
TMG i nage_set _fl ags(hl nage, TMG LOCKED, TRUE);

/* We now have hlmage using our nenory that the TMG library will not touch */
/* To destroy it we nust free it and set the pointer to NULL */
free(pl mageMenory) ;

TMG_i mage_set _ptr (hl mage, TMG | MAGE_DATA, NULL);
TMG_i nage_dest roy(hl mage) ;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_set flags, TMG image get ptr.

TMG Programmer’s Manual v4.0.1 TMG_image write 125

TMG_image_write

USAGE
Terr TMG image write(Thandle Hin_image, Thandle Hout image, uil6 format, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to an optional output image.
format The desired file format - one of: TMG MEMORY, TMG TIFF, TMG TARGA,

TMG JPEG, TMG EPS, TMG BMP, TMG RAW.

TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function writes an image to disk or memory. If writing to disk, the function is called with Hout image
set to TMG NULL and format set to the required file format.

This function is essentially the inverse of TMG _image_read.

The TMG RAW format listed above is simply a binary dump of the image data as a byte stream. 16 bit image
data is always written in Intel order - that is least significant byte first).

The concept of strips does not directly apply to writing JPEG data to file (but more so than to reading JPEG
data). In the situation of writing JPEG data in “strips”, each strip of processed image will produce a certain
amount of JPEG data. The number of bytes of JPEG data generated each strip by the compression function
(e.g. TMG _JPEG compress) will be stored internally in the image structure. This will be used by the writing
function to know how many bytes of JPEG data to write each strip. The JPEG end of data marker will
automatically be added at the end of the last strip. See TMG JPEG compress for an example. When it is
necessary to write “strips” of JPEG data to memory use the function TMG JPEG build image.

Internally this function calls the following file read functions:

TMG write to_memory(Thandle Hin_image, Thandle Hout image, uil6 TMG action)
TMG write TIFF file(Thandle Hin _image, uil6 TMG action)

TMG write EPS file(Thandle Hin_image, uil6 TMG action)

TMG write TGA_file(Thandle Hin_image, uil6 TMG action)

TMG write BMP_file(Thandle Hin_image, uil6 TMG action)

TMG write RAW data_file(Thandle Hin_image, uil6 TMG action)

TMG JPEG file write(Thandle Hin_image)

It is recommended that the TMG image write function is used, as it provides a simple common interface.
However applications linked with static libraries may prefer to use the individual function calls, to reduce the
size of the resulting executable.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads, sub-samples, then writes a TIFF file (the whole image in one go):

TMG i mage_set _i nfil ename(hl mage, “sky.tif”);

TMG i nage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG_ i mage_set _par anmet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG Programmer’s Manual v4.0.1 TMG_image write 126

TMG_ | P_subsanpl e(hl mage, hQut | mage, 2, TMG RUN);
TMG i mage_write(hQutl mage, TMG NULL, TM5 TIFF, TMG RUN);

This next example reads a TIFF file in strips and saves it as its mirror image. This strip processing approach
would be needed for very large images. Note that a “dummy” read is needed first to determine the height of
the image so that the number of strips can be calculated:

TMG i mage_set _infil enanme(hl mage, “sky.tif”);

/* The outfil ename parameter gets transferred to hCQutlnage */

TMG i mage_set _outfil enane(hl mage, “sky_mirror.tif”);

/* open the file to read the inmge height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMG RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i mage_set _paraneter (hl nage, TMG LINES TH S STRIP, 8);
Total Strips = TMG i nage_cal c_total _stri ps(hl nage);

for (Strip = 0; Strip < Total Strips; Strip++) {

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

TMG I P_mirror_i mage(hl mage, hQutl nmage, TMG RUN);

TMG i mage_write(hQutlmage, TMG NULL, TMG Tl FF, TM5 RUN);
}

This final example assumes that a complete image is required in memory in zFulllmage, after reading and
mirroring the image in strips to conserve memory:

TMG i mage_set _infil ename(hl mage, “sky.tif”);

/* open the file to read the inmage height */
TMG i nage_set _par anet er (hl mage, TMG_HEI GHT, 0);
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG i mage_r ead(hl mage, TMG NULL, TMS RESET);

/* Now set up the strip processing |oop and proceed, 8 lines at time */
TMG i nage_set _paraneter (hFul | I mage, TMG LINES TH S STRI P, 8);
Total Strips = TMG i nage_cal c_total _strips(hFulllmge);

for (Strip = 0; Strip < Total Strips; Strip++) {
TMG i mage_read(hStri pl mage, TMG NULL, TMG RUN);
TMG I P_mrror_i mage(hStripl mage, hOutlmage, TMG RUN);
TMG i mage_write(hCutl mage, hFulll mage, TMs MEMORY, TMG RUN);

BUGS / NOTES
Of the TIFF and BMP formats, only uncompressed image data is supported.
The supported pixel formats are:

TIFF: TMG RGB24, TMG Y8, TMG Y16, TMG PALETTED.
EPS: TMG RGB24, TMG Y8, TMG PALETTED.

TGA: TMG RGB24, TMG RGBI15, TMG Y8.

BMP: TMG RGB24, TMG Y8, TMG PALETTED.

RAW: All formats.

SEE ALSO

TMG image read, TMG image get infilename,
TMG image get outfilename, TMG JPEG file write.

TMG Programmer’s Manual v4.0.1 TMG _IP_crop 127

TMG_IP_crop

USAGE
Terr TMG IP_crop(Thandle Hin_image, Thandle Hout image, il6 *roi, uil6 TMG action)

ARGUMENTS

Hin_image Handle to the input image.
Hout image Handle to the output image.
roi “ROI” array with four elements, with #defined element names:
ASL ROI X START Horizontal start position (0..N).
ASL ROI Y START Vertical start position (0..N).
ASL ROI X LENGTH Horizontal width of box.
ASL ROI Y LENGTH Vertical height of box.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be

aborted.
DESCRIPTION

This function takes the input image, Hin_image, and crops it to the dimensions of the roi, to generate the
output image Hout image.

When processing in strips, it may well be that one or more of the output strips contains no image data (i.e.
they are part of the cropped region). Any downstream TMG function cope with this.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
The following code fragment reads a TIFF file and crops it to be a multiple of 8 in both dimensions:

i 16 Roi [ASL_SI ZE 2D RO];

Roi [ASL_ROl _X_START]
Roi [ASL_ROl _Y_START]

0;
0;

TMG i mage_set _infil ename(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_crop.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5_AUTO_HEI GHT) ;

TMG i mage_r ead(hl mage, TMG NULL, TMS RUN);

Roi [ASL_RO _X LENGTH] = (i 16) (TMS_ i mage_get par anet er (hl mage,
TMG W DTH) / 8) *8;

Roi [ASL_RO _Y_LENGTH] = (i 16) (TMS_ i mage_get par aneter (hl mage,
TMG_HEI GHT))/ 8) *8;

TMG | P_crop(hl mage, hQutl mage, Roi, TM5 RUN);

TMG i mage_write(hQutl mage, TMG NULL, TMS TIFF, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG IP pixel rep, TMG IP subsample, TMG IP extract region.

TMG Programmer’s Manual v4.0.1 TMG_IP_extract_region 128

TMG_IP_extract_region

USAGE

Terr TMG _IP extract _region(Thandle Hin_image, Thandle Hout image, ui32 dwRegionType, ui32 dwX,
ui32 dwy, ui32 dwRadius, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
dwRegionType Type of region to extract. (Currently only support a circle - type 0.)
awX Origin of region centre (x).
awY Origin of region centre (y).
dwRadius Radius of circle.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, extracts a region from it and places the output image data
into Hout image.

The coordinate system has the origin at the top left of the image. The output “image” has its width set to 1
and its width set to the number of pixels extracted.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file and extracts a circular region of data in preparation for some
image processing:

TMG_ i mage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;

TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

/* Extract a circular region fromthe inmage, 0 = region type circle */

TMG | P_extract _regi on(hl mage, hlmageData, 0, dwTargetOigi nX, dwTargetOiginY,

dwTar get Radi us, TMG RUN) ;
...1* Image data processing as required */

BUGS / NOTES

The only supported region is a circle.

SEE ALSO
TMG IP crop.

TMG Programmer’s Manual v4.0.1 TMG_IP_filter 3x3 129

TMG_IP_filter_3x3

USAGE
Terr TMG IP _filter 3x3(Thandle Hin_image, Thandle Hout image, il6 *array, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
array 3 x 3 filter mask coefficients.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function performs a filtering operation on the image, Hin_image, to produce an output image,
Hout image. The filter is a 3 x 3 mask function of the following form:

clc2c3
c4 c5co
c7¢c8¢c9, where array points to the first element c1.

Output pixels are generated by multiplying each coefficient by the pixel in the same orthogonal position as the
coefficient, and then dividing by the sum of the coefficients. Typical applications include smoothing or
sharpening an image. Example coefficients are as follows:

1 11
1 11 Smoothing functioning.
1 11
-1 -1 -1
-1 12 -1 Strong edge sharpening.
-1 -1 -1
-1 -1 -1
-1 20 -1 Medium edge sharpening.
-1 -1 -1
RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES
The following code fragment shows how to edge enhance an image:
i16 Array[9];
;Array[O] =-1; Array[l1] = -1; Array[2] = -1;
Array[3] = -1; Array[4] = 20; Array[5] = -1;
Array[6] = -1; Array[7] = -1; Array[8] = -1;

TMG I P_filter_3x3(hlnlmge, hCutlnmage, Array. TMG RUN);

BUGS / NOTES
This function only works on grayscale and 24 bit RGB images. (i.e. TMG Y8 and TMG _RGB24).

TMG Programmer’s Manual v4.0.1 TMG_IP_filter 3x3 130

SEE ALSO

TMG Programmer’s Manual v4.0.1 TMG _IP_generate_averages 131

TMG_IP_generate_averages

USAGE

Terr TMG IP generate_averages(Thandle Hin_image, struct tTMG Averages *psAverages, uil6
TMG action)

ARGUMENTS
Hin_image Handle to the input image.
psAverages Pointer to a TMG “Averages” structure (see source include file “tmg.h” for full details).
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, and calculates the average value for each plane in the image.
The results are put into the TMG Averages structure pointed to by ps4verages. The structure is defined in the
source include file “tmg.h”.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to calculate the average hue, saturation and intensity levels in an
image.
struct tTMG Averages sAverages;

TMG_ i mage_convert (hYuvl nage, hHsilnmage, TMG HSI, 0, TMG RUN);
TMG_ | P_gener at e_aver ages(hHsi | nage, &sAverages, TMG RUN);
printf(“Average hue %\ n”, (int) sAverages.dwPl anel);
printf(“Average sat %\ n”, (int) sAverages.dwPl ane2);
printf(“Average int %\ n”, (int) sAverages.dwPl ane3);

BUGS / NOTES
There is only support for TMG image type TMG HSI.

SEE ALSO
TMG IP histogram_generate.

TMG Programmer’s Manual v4.0.1 TMG_IP_histogram clear 132

TMG_IP_histogram_clear

USAGE
Terr TMG _IP_histogram_clear(struct tTMG _Histogram *psHistogram)

ARGUMENTS

psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).

DESCRIPTION

This function takes the histogram structure, psHistogram, and clears down all structure elements to 0.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment clears down the histogram structure, psHistogram:
struct tTMG Hi stogram *psHi st ogram

TMG_| P_hi st ogram cl ear (psHi st ogram ;

BUGS / NOTES

SEE ALSO
TMG IP histogram_generate, TMG IP histogram_match, TMG IP histogram_filter.

TMG Programmer’s Manual v4.0.1 TMG_IP_histogram_filter 133

TMG_IP_histogram_filter

USAGE
Terr TMG IP_histogram_filter(struct tTMG_Histogram *psHistogram, i32 nFilterOrder)

ARGUMENTS

psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).
nFilterOrder Filter type. e.g. TMG LP FILTER ORDER 0.

DESCRIPTION

This function takes the histogram structure, psHistogram, and filters the histogram(s) using the filter specified
by nFilterType.

TMG LP FILTER ORDER 0 is the only supported option for nFilterOrder. This applies the following
digital filter algorithm:

Y(n)=(X(nt+1) +2.X(n) + X(n-1)) / 4.
In order to apply higher order filters, simply call the function repeatedly as required.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment generates an HSI image, then generates and filters the histogram for each plane:

TMG i mage_convert (hYuvl mage, hHsilmage, TM5 HSI, 0, TMG RUN);
TMG_| P_hi st ogr am gener at e(hHsi | mage, psH stogram TMG RUN);
TMG | P_histogram filter(psH stogram TMG FILTER ORDER 0);

BUGS / NOTES
There is only support for TMG image type TMG HSI.
TMG LP FILTER ORDER 0 is the only supported option for nFilterOrder.

SEE ALSO
TMG IP_histogram_generate, TMG IP_histogram_match, TMG IP histogram_clear.

TMG Programmer’s Manual v4.0.1 TMG_IP_histogram_generate 134

TMG_IP_histogram_generate

USAGE
Terr TMG _IP_histogram_generate(Thandle Hin_image, struct tTMG Histogram *psHistogram, uil6
TMG action)

ARGUMENTS
Hin_image Handle to the input image.

psHistogram Pointer to a TMG “Histogram” structure (see source include file “tmg.h” for full details).
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be

aborted.
DESCRIPTION

This function takes the input image, Hin_image, and generates a histogram for each plane in the image. The
results are put into the TMG Histogram structure pointed to by psHistogram. The structure is defined in the
source include file “tmg.h”.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
The following code fragment generates an HSI image and then generates a histogram for each plane:

struct tTMG Hi stogram *psHi st ogram

TMG_ i mage_convert (hYuvl nage, hHsilnmage, TMG HSI, 0, TMG RUN);
TMG_| P_hi st ogr am gener at e(hHsi | mage, psHi stogram TMG RUN);

BUGS / NOTES
There is only support for TMG image type TMG HSI.

SEE ALSO

TMG IP histogram_filter, TMG IP histogram_match, TMG IP histogram_clear,
TMG IP generate_averages.

TMG Programmer’s Manual v4.0.1 TMG_IP_histogram_match 135

TMG_IP_histogram_match

USAGE

Terr TMG _IP_histogram_match(struct tTMG_Histogram *psRefHistogram, struct tTMG _Histogram
*psInHistogram, i32 nPlane, ui32 *pdwResult)

ARGUMENTS
psRefHistogram Pointer to the reference TMG “Histogram” structure.
psInHistogram Pointer to the input TMG “Histogram” structure.
nPlane References plane 1, 2 or 3, representing HSI, RGB or YUV 4:2:2 planes.
pdwResult Pointer to 32 bit unsigned integer which is filled in by the function with the result.
DESCRIPTION

This function takes the input histogram structure, ps/nHistogram, and compares it to the reference histogram,
psRefHistogram, and gives a percentage match in pdwResult. Only one histogram plane, selected by nPlane,
is compared at a time.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES
The following code fragment generates an HSI image, then performs a histogram match of the hue
component:

TMG i mage_convert (hYuvl mage, hHsilmage, TM5 HSI, 0, TMG RUN);

TMG_| P_hi st ogr am gener at e(hHsi | mage, psHi stogram TMG RUN);

/* Hue match - plane 1 (selects HS/1) */

TMG_| P_hi st ogram mat ch(psRef H st ogram psHi stogram 1, pnHueMatch);
printf(“Spectrum match = %\ n”, *pnHueMatch);

BUGS / NOTES

SEE ALSO
TMG IP_histogram_generate, TMG IP histogram_filter, TMG IP_histogram clear.

TMG Programmer’s Manual v4.0.1 TMG_IP_mirror_image 136

TMG_IP_mirror_image

USAGE
Terr TMG IP_mirror_image(Thandle Hin_image, Thandle Hout image, uil6 TMG action)

ARGUMENTS

Hin_image Handle to the input image.
Hout image Handle to the output image.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be

aborted.
DESCRIPTION

This function takes the input image, Hin_image, and mirrors it (lateral inversion), to generate the output
image Hout image.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, mirrors it and writes it back:

TMG_ i nage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _outfil enanme(hlmage, “sky_mrrored.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG I P_mirror_i mage(hl mage, hQutl mage, TMG RUN);

TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG Programmer’s Manual v4.0.1 TMG_IP_pixel rep 137

TMG_IP_pixel_rep

USAGE
Terr TMG _IP pixel rep(Thandle Hin_image, Thandle Hout _image, uil6 rep factor, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
rep_factor The pixel replication factor.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, and replicates the each pixel using the simple integer scaling
factor, rep_factor, to generate the output image Hout image.

This function can be used to “zoom” an image for display purpose as long as there is sufficient memory.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, expands it by two and writes it back:

TMG i mage_set _i nfil enanme(hl mage, “sky.tif”);

TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5 _AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG | P_pi xel _rep(hl mage, hQutlnmage, 2, TMG RUN);

TMG i mage_write(hQutl mage, TMG NULL, TMS TIFF, TMG RUN);

BUGS / NOTES

This function only supports simple binary scaling, that is rep_factor must be 1, 2, 4, 8 etc.

SEE ALSO
TMG_IP_subsample.

TMG Programmer’s Manual v4.0.1 TMG_IP_rotate_image 138

TMG_IP_rotate_image

USAGE
Terr TMG IP_rotate _image(Thandle Hin_image, Thandle Hout image, ui32 dwDegrees)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.

dwDegrees Degrees by which to rotate the image. Must be one of 0, 90, 180 or 270.

DESCRIPTION

This function takes the input image, Hin_image, and rotates it by the angle dwDegrees. This function
requires the whole image to be present in Hin_image (i.e. it cannot operate in strips).

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, rotates it and writes it back out as a TIFF file.

TMG_ i mage_set _i nfil enane(hl mage, “sky.tif”);

TMG_ i nage_set _outfil enane(hl mage, “sky_r90.tif");

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG | P_rotate_i mage(hl nrage, hQut | nmage, 90);

TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG Programmer’s Manual v4.0.1 TMG_IP_subsample 139

TMG_IP_subsample

USAGE
Terr TMG IP_subsample(Thandle Hin_image, Thandle Hout image, uil6 sub_factor, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
sub_factor The sub-sample factor.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, Hin_image, and sub-samples it using a simple integer scaling factor,
sub_factor, to generate the output image Hout image.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, sub-samples it by two and writes it back:
TMG i mage_set _infil ename(hl mage, “sky.tif”);
TMG i mage_set _outfil enane(hl mage, “sky_x2.tif”);
TMG i nage_set _par anet er (hl mage, TMG _HElI GHT, TM5 _AUTO_HEI GHT) ;
TMG i mage_r ead(hl mage, TMG NULL, TMG RUN);
TMG_ | P_subsanpl e(hl mage, hQut | nmage, 2, TMG RUN);
TMG i mage_write(hQutlmage, TMG NULL, TMS TIFF, TMG RUN);

BUGS / NOTES

This function only supports simple binary sub-sampling, that is sub_factor must be 1, 2, 4, 8 etc. Also the
input image must be exactly divisible by the sub-sampling factor.

SEE ALSO
TMG IP pixel rep, TMG IP crop.

TMG Programmer’s Manual v4.0.1 TMG_IP_threshold grayscale 140

TMG_IP_threshold_grayscale

USAGE

Terr TMG IP_threshold grayscale(Thandle Hin_image, Thandle Hout image, ui8 white level, ui8
black level, uil6 TMG action)

ARGUMENTS
Hin_image Handle to an input image.
Hout image Handle to an output image.

white_level White level threshold.
black level Black level threshold.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.

DESCRIPTION

This processing function accepts a grayscale image (of type TMG _Y§) and performs a white level and black
level threshold operation on it. All pixels in the image with a value greater than or equal to white level are
set to white (value 255), and all pixels with values less than black level are set to black (value 0). The output
image is a grayscale image. This function can be useful for mapping background gray levels to white or black
and could be regarded as a simple type of luma keying.

For a single threshold, resulting in an output image with only black (0) or white (255) pixels, white level and
black level would be set equal to one and other.

Applications include pre-processing an image prior to JPEG compression (to improve the compression ratio),
or prior to printing to obtain a better looking image.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment reads a TIFF file, thresholds it and writes it back:
TMG_ i nage_set _infil enane(hl mage, “car.tif”);
TMG_ i nage_set _outfil enane(hlmage, “car_out.tif”);
TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;
TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);
/* Al gray levels |less than 20 will becone 0 and all */
/* white levels greater than 200 will becone 255. */
TMG_ | P_t hreshol d_grayscal e(hl rage, hQutl nmage, 20, 200, TMG RUN);
TMG_ i mage_write(hQutlmage, TMG NULL, TMG TIFF, TMG RUN);

BUGS / NOTES
This function only works for grayscale images.

There are no known bugs.

SEE ALSO

TMG Programmer’s Manual v4.0.1 TMG JPEG buffer read 141

TMG_JPEG_buffer_read

USAGE
Terr TMG _JPEG buffer read(Thandle Hjpeg image, ui8 *pbData, ui32 dwBytesData)

ARGUMENTS

Hjpeg image A handle to a JPEG image.
pbData Pointer to the buffer containing data in JPEG interchange format.
dwBytesData The amount of data in the buffer.

DESCRIPTION

This function reads a full JPEG image from the buffer, pbData, into Hjpeg image in one go (i.e. not in
strips). The internal image parameter lines_this_strip is set to height to indicate that the whole image is
present (as compressed JPEG data). The amount of memory allocated for the compressed data itself is set to
dwBytesData (this is a convenient number to use, although typically around 700 bytes more than is necessary.
Using this number, to allocate memory, saves a memory to memory copy that would be required if memory
usage was to be optimised.)

This function is useful when sending JPEG “files” over network links — see the example below.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how the function could be used to receive a JPEG image over a network:

/* Read the data froma renote machi ne using “SCA Recv” (comms read fn) */
dwSt at us = SCA Recv(hConnection, &JIwConmand, &pbData, &dwSize, 5000);
if ((dwStatus == 0) && (pbData !'= NULL)) /* Received data OK? */

{
TMG_JPEG buf fer _read(hJPEQ nage, pbData, dwSize);
/* Deconpress to RGB (as opposed to YUv422) */
TMG_ i mage_set _par anet er (hSrcl mage, TMG Pl XEL_FORMAT, TMG RGB24);
/* |f grayscale this will automatically change to Y8 in the deconpress

function. */

TMG_JPEG deconpr ess(hJPEGQ nage, hSrcl mage, TMG RUN);
/* Convert to DIB */
TMG_ i mage_convert (hSrcl mage, hDl Bl mage, TMG BGR24, TMG IS DIB, TMG_RUN);
TMG_di spl ay_i mage(hDi spl ay, hDI Bl mage, TMG_RUN);

}

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG buffer write, TMG JPEG file read.

TMG Programmer’s Manual v4.0.1 TMG _JPEG buffer write 142

TMG_JPEG_buffer_write

USAGE
Terr TMG _JPEG buffer write(Thandle Hjpeg image, ui8 *pbData, ui32 *pdwCount, uil6 TMG action)

ARGUMENTS
Hjpeg image A handle to a JPEG image.
pbData Pointer to target buffer (user allocated).
pdwCount Pointer to a 32 bit unsigned word, filled in by the function, indicating the total amount of

data written.
TMG action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function writes the JPEG image, Hjpeg image, to a buffer in JPEG/JFIF “file” format. It may be called
as part of a strip processing loop, in which case it will automatically write the amount of compressed data
produced so far by the compression process. In this instance, the internal image parameter lines_this_strip,
would be used as an indicator of when the last strip of compressed data is written so that an EOI (End of
Image) marker can be appended to the end of the data stream.

If the whole compressed image is written as one strip, lines_this_strip should be set to the image height, in
which case the EOI marker will again be automatically appended. Alternatively, if TMG JPEG buffer write
is called with TMG_RESET, the EOI marker is immediately written to the file.

This function is useful when sending JPEG images over network connections.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how the function could be used to send a JPEG image over a network:

TMG_JPEG conpress(hl mage, hJpegl mage, TMG RUN);

TMG _JPEG buffer_write(hJpegl mage, pbData, &dJIwSize, TMG RUN);
SCA_Send(hConnection, CC _NET_| MAGE, pbData, dwSize, TIMEQUT_5SECS);
/* “SCA_Send” is an exanple network send command */

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG buffer read, TMG JPEG file write.

TMG Programmer’s Manual v4.0.1 TMG_JPEG build_image 143

TMG_JPEG_build_image

USAGE
Terr TMG JPEG build _image(Thandle Hin_image, Thandle Hout image, uil6 TMG action)

ARGUMENTS

Hin_image Handle to the input JPEG image.
Hout image Handle to the output JPEG image.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.

DESCRIPTION

This function is designed to be used as the last function in a strip processing loop to build a full JPEG image
in memory. For example the source raw image may be compressed 8 lines at a time and be 64 lines high - in
this case TMG JPEG build _image would be called 8 times (in the strip processing loop) and the resulting
complete JPEG image contained in Hout image.

This function will also optimise the memory usage of the JPEG image using one of the features of the
function TMG JPEG sequence_build.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment JPEG compresses the image Hin_image, which contains is a full image in
memory (and has its internal parameter lines_this_strip set to 8).
TMG_ i nage_set _paraneter(H n_i mage, TMG LINES TH S STRIP, 8);
total _strips = (ui16) TMG.image_cal c_total _strips(Hi n_i nage);
for (strip = 0; strip < total _strips; strip += 1) {
TMG_ i mage_read(H n_i nage, Hstripped_i nage, TMG RUN);
TMG_JPEG conpress(Hstripped_i nage, H enp_i nage, TMG RUN);
TMG_JPEG bui l d_i mage(Ht enp_i mage, H peg_i mage, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG file write, TMG JPEG file open, TMG JPEG file read, TMG JPEG sequence build.

TMG Programmer’s Manual v4.0.1 TMG _JPEG_compress 144

TMG_JPEG_compress

USAGE
Terr TMG _JPEG _compress(Thandle Himage, Thandle Hjpeg image, uil6 TMG action)

ARGUMENTS

Himage Handle to a raw (uncompressed) image.
Hjpeg image Handle to a JPEG image.
TMG action Either TMG RUN for normal operation or TMG RESET to abort.

DESCRIPTION

This function compresses an image (or strip) using the JPEG baseline compression algorithm. When the
function is called with TMG _action set to TMG _RUN, raw image data is read from Himage, and compressed
JPEG data written to Hjpeg image. The strip size is determined by the /ines_this_strip parameter of Himage
(set using TMG image_set parameter). If the function is called with TMG action set to TMG RESET the
compression process is aborted and local static (internal) variables are reset. TMG_RESET is rarely needed.

Its recommended that images are compressed a strip at a time (set lines_this_strip to §), because this function
uses several intermediary images internally.

This function is called by TMG JPEG compress_image to_image.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is slightly faster if the image to be compressed has a width which is exactly divisible by 16 for
colour images and 8 for grayscale images, and a height that is exactly divisible by 8.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

SEE ALSO
TMG JPEG decompress, TMG JPEG compress_image to_image, TMG JPEG set Quality factor.

TMG Programmer’s Manual v4.0.1 TMG_JPEG compress image to image 145

TMG_JPEG_compress_image_to_image

USAGE

Terr TMG JPEG compress_image_to_image(Thandle Himage, Thandle Hjpeg image, uil6 in_format,
uil6 out format)

ARGUMENTS

Himage Handle to raw image.

Hjpeg image Handle to JPEG image.
in_format TMG MEMORY or TMG FILE.
out_format TMG MEMORY or TMG FILE.

DESCRIPTION

This is a convenient wrapper function for TMG JPEG compress that compresses a complete image using the
JPEG baseline compression algorithm. Raw image data is read from Himage, compressed and written to
Hjpeg image. If the input format, in_format, is set to TMG MEMORY, raw image data is read from memory
(from Himage). 1f in_format is set to TMG FILE, it is read from the file associated with Himage (i.e. set
using TMG image_set infilename). Similarly, if the output format, out format, is set to TMG _MEMORY,
compressed data is written to memory (in Hjpeg image). 1If out format is set to TMG_FILE it is written
directly to the JPEG file referenced by Hjpeg image (i.e. set using TMG image set outfilename). 1f the
lines this_strip parameter of Himage is less than the total image height, then compression is performed in
strips. The lines_this strip parameter is set using TMG_image set parameter.

Its recommended that images are compressed a strip at a time (set lines_this_strip to 8), because this function
uses several intermediary images internally.

This function is a convenient way of compressing from file to file with just one call.

The output memory used by Hjpeg image is optimized to its exact requirements.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

This function is slightly faster if the image to be compressed has a width which is exactly divisible by 16 for
colour images and 8 for grayscale images, and a height that is exactly divisible by 8.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

SEE ALSO
TMG JPEG decompress_image to_image, TMG JPEG compress, TMG JPEG set Quality factor.

TMG Programmer’s Manual v4.0.1 TMG_JPEG_decompress 146

TMG_JPEG_decompress

USAGE
Terr TMG JPEG_decompress(Thandle Hjpeg image, Thandle Himage, uil6 TMG action)

ARGUMENTS

Hjpeg image Handle to compressed JPEG image.
Himage Handle to raw (uncompressed) image.
TMG action Either TMG RUN for normal operation or TMG RESET to abort.

DESCRIPTION

This function decompresses a single image strip using the JPEG baseline decompression algorithm. If the
function is called with TMG _action set to TMG RUN, compressed image data is read from Hjpeg image, and
raw data written to Himage. The strip size is determined by the /ines_this_strip parameter of Hjpeg image.
If the function is called with TMG _action set to TMG RESET, the decompression is aborted and internal
static variables are reset.

For colour images, the JPEG image may be decompressed to YUV 4:2:2 data or RGB data depending on the
pixel format set in Himage (see TMG image set parameter with TMG PIXEL FORMAT). By default the
decompressed image will have the pixel format TMG RGB24, but if the pixel format is set to TMG _YUV422
prior to calling this function, the pixel format of the decompressed image will be TMG YUV422.

Its recommended that images are compressed a strip at a time (set lines_this_strip to 8 using
TMG image_set parameter), because this function uses several intermediary images internally.

This function is called by TMG JPEG decompress_image to_image.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES
Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

SEE ALSO
TMG JPEG compress, TMG JPEG decompress _image to_image.

TMG Programmer’s Manual v4.0.1 TMG JPEG decompress image to image 147

TMG_JPEG_decompress_image_to_image

USAGE
Terr TMG JPEG decompress _image to_image(Thandle Hjpeg image, Thandle Himage, uil6 in_format,
uil6 out format)
ARGUMENTS
Hjpeg image Handle to compressed image.
Himage Handle to raw image.
in_format TMG MEMORY or TMG FILE.

out_format TMG_MEMORY or a file type: TMG_TIFF, TMG _TGA, TMG_EPS, TMG_BMP etc.

DESCRIPTION

This function decompresses a complete image using the JPEG baseline compression algorithm. Compressed
image data is read from Hjpeg image, and raw image data written to Himage. If the parameter, in_format, is
set to TMG_MEMORY, compressed image data is read directly from memory (referenced by Hjpeg image).
Ifin_format is setto TMG FILE, the JPEG data is read from the JPEG/JFIF file associated with

Hjpeg image. Similarly, if the parameter, out format, is set to TMG _MEMORY, raw image data is written to
memory (in Himage). If out format is set to a file type, for example TMG TIFF, it is written directly to the
file referenced by Himage in that format. If the lines this_strip parameter of Hjpeg image is less than the
total image height, the decompression is performed in strips.

When decompressing colour images to memory, the output pixel format may be YUV 4:2:2 or RGB
depending on the pixel format set in Himage (see TMG _image set parameter with TMG PIXEL FORMAT).
By default the decompressed image will have the pixel format TMG RGB24, but if the pixel format is set to
TMG YUV422 prior to calling this function, the pixel format of the decompressed image will be

TMG YUVA422.

Its recommended that images are compressed a strip at a time (set lines_this_strip to 8 using
TMG image set parameter), because this function uses several intermediary images internally.

This function is a convenient way of decompressing from file to file with just one call.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES
Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

SEE ALSO
TMG JPEG decompress, TMG JPEG compress image to image.

TMG Programmer’s Manual v4.0.1 TMG_JPEG file close 148

TMG_JPEG file_close

USAGE
Terr TMG _JPEG file close(Thandle Himage)

ARGUMENTS
Himage A handle to a JPEG image.

DESCRIPTION

This function is used to close a JPEG file that has previously been opened using TMG JPEG file open. It is
rarely needed because the JPEG file will be closed by the functions that access it. However if the
(decompression) process is aborted it will be necessary for the application program to close the file itself.

The example below shows a situation in which the JPEG image is not decompressed, but simply examined,
which requires the use of this function.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment uses TMG JPEG file open to see what type of image it is. It then needs to use
TMG JPEG file close to close the file. TMG JPEG file read could be used but that would be slower and
have to allocated memory for the JPEG data.

ui 16 Pi xel For mat ;

TMG_ i nage_set _i nfil ename(hJPEQ mage, “car.jpg”);
TMG_JPEG fil e_open(hJPEGQ mage) ;
Pi xel Format = (ui 16) TMG_ i nage_get _par anet er (hJPEA mage, TMG Pl XEL_FORVAT) ;
if ((Pixel Format == TMG YW422) || (Pixel Format == TMG RGB24))
printf(“lts a col our inmage”);
else if (Pixel Format == TMG_Y8)
printf(“lts a grayscale inage”);

TMG_JPEG fil e_cl ose(hJPEG nage) ;

BUGS / NOTES

For use with decompression directly from file, this function is only supported when using Crunch (hardware)
JPEG decompression. It is not supported when using TMG software JPEG decompression - in this mode the
JPEG file must be read into memory first.

The function CRUNCH _decompress or CRUNCH _decompress_image_to_image will close the file
automatically after it has been decompressed. However if it is not decompressed (perhaps because the
operation was aborted), the application program should call TMG JPEG file close directly.

The Huffman tables are currently not read in and “default” Huffman tables as suggested in the JPEG
specification are always used.

SEE ALSO

TMG _JPEG file open, TMG_image get infilename,
TMG image get outfilename, TMG JPEG file read.

TMG Programmer’s Manual v4.0.1 TMG_JPEG file_open 149

TMG_JPEG _file_open

USAGE
Terr TMG _JPEG file open(Thandle Himage)

ARGUMENTS
Himage A handle to a JPEG image.

DESCRIPTION

This function reads all the JPEG header information from a JPEG file, referenced by Himage, but does not
read the JPEG data itself. It leaves an internal file pointer (internal to Himage) pointing at the JPEG data for
use by other processing functions. This can be useful when memory is limited.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section. See also the example for
TMG JPEG file close.

BUGS / NOTES

This function is only supported when using Crunch (hardware) JPEG decompression. It is not supported
when using TMG software JPEG decompression - in this mode the JPEG file must be read into memory first.

The function CRUNCH _decompress or CRUNCH _decompress_image_to_image will close the file
automatically after it has been decompressed. However if it is not decompressed, the application program
should call TMG JPEG file close directly.

The Huffman tables are currently not read in and “default” Huffman tables as suggested in the JPEG
specification are always used.

SEE ALSO

TMG image_get infilename,
TMG image_get outfilename, TMG JPEG file read, TMG JPEG file close,
TMG JPEG sequence_calc length

TMG Programmer’s Manual v4.0.1 TMG_JPEG file read 150

TMG_JPEG file_read

USAGE
Terr TMG _JPEG file read(Thandle Hjpeg image)

ARGUMENTS
Hjpeg image A handle to a JPEG image.

DESCRIPTION

This function reads a full JPEG image from file into Hjpeg image in one go (i.e. not in strips). The internal
image parameter /ines_this_strip is set to height to indicate that the whole image is present (as compressed
JPEG data). Note that this function does not optimise the amount of memory it uses for the JPEG data — it
actually allocates the same amount of memory as would be used in a raw image. This is a speed optimisation
at the detriment of memory efficiency (the amount of JPEG data is not known in advance). For memory
optimisation, either the memory can be allocated and locked in advance by the application (see

TMG image_set ptr), or more simply, the function TMG JPEG sequence build can be used.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG JPEG buffer read, TMG image read, TMG JPEG file write, TMG image get infilename,
TMG image_get outfilename.

TMG Programmer’s Manual v4.0.1 TMG_JPEG file write 151

TMG_JPEG_file_write

USAGE
Terr TMG _JPEG file write(Thandle Hjpeg image, uil6 TMG action)

ARGUMENTS

Himage A handle to a JPEG image.
TMG action Either TMG RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function writes the JPEG image, Hjpeg image, to a in JPEG/JFIF file. It may be called as part of a strip
processing loop, in which case it will automatically write the amount of compressed data produced so far by
the compression process. In this instance, the internal image parameter lines_this_strip, would be used as an
indicator of when the last strip of compressed data is written so that an EOI (End of Image) marker can be
appended to the end of the data stream.

If the whole compressed image is written as one strip, lines_this_strip should be set to the image height, in
which case the EOI marker will again be automatically appended. Alternatively, if TMG JPEG file write is
called with TMG RESET, the EOI marker is immediately written to the file.

Note that TMG JPEG file read sets lines_this_strip to the image height.

Normally this function would not be used, but the wrapper function 7TMG image write used instead.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO

TMG JPEG buffer write, TMG image write, TMG JPEG file read, TMG image get infilename,
TMG image get outfilename.

TMG Programmer’s Manual v4.0.1 TMG_JPEG image create 152

TMG_JPEG_image_create

USAGE
Terr TMG _JPEG image_create()

ARGUMENTS

None.

DESCRIPTION

This function creates a Timage structure and 7jpeg structure which is pointed to from the Timage structure,
and returns a handle to that 7image structure. It also performs some initialization - that is characters strings
are set to \0’ and the data pointers set to NULL. The variable lines this _strip is set to 8. Note that no
memory is created for the JPEG data itself - this is performed by TMG functions. The Tjpeg structure can
hold single or multiple (motion) JPEG encoded image(s) or a strip of a single image.

Note that a JPEG image is a superset of an ordinary image. Note that a JPEG image can hold either JPEG
data or raw image data (but not both unless it is the same image). See the file “tmg.h” for the actual structure

definitions.

RETURNS

On success a valid handle is returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of

this manual.

EXAMPLES

The following code creates an image and gets a handle to it:
Thandl e hJPEA nage; /* Handle to a JPEG i nage structure */

if (ASL_is_err(hlmage = TMG JPEG i mage_create())
printf(“Failed to create a JPEG i nage”);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG image_destroy, TMG image_create.

TMG Programmer’s Manual v4.0.1 TMG_JPEG _sequence build 153

TMG_JPEG_sequence_build

USAGE
Terr TMG _JPEG sequence_build(Thandle Hin_image, Thandle Hout image)

ARGUMENTS
Hin_image Handle to the input image or TMG NULL.
Hout image Handle to the output image.
DESCRIPTION

This function is builds a JPEG sequence of images. The input images are sequentially added to the JPEG
data stream in Hout _image. Restart markers are inserted between each frame (or scan in JPEG terminology)
in the data stream. Note that it is assumed that each successive image is of the same type and has the same
width and height.

This function can also be used to optimise the memory usage by the compressed data. When memory is
allocated for a JPEG image, an excess is allocated, because the precise requirements cannot be predicted in
advance. If Hin_image is set to TMG NULL, the memory allocation for Hout image will be re-done to
match precisely its requirements. Obviously this can only be done when Hout image contains a valid JPEG
image.

For a motion JPEG sequence acquisition of tens of frames, note that several megabytes may typically be used.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the Crunch Library Programmer’s Manual for example code and the file “seq.c” available with the
Snapper SDK.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG sequence calc length.

TMG Programmer’s Manual v4.0.1 TMG_JPEG _sequence calc_length 154

TMG_JPEG_sequence_calc_length

USAGE
Terr TMG JPEG sequence_calc_length(Thandle Hjpeg image)

ARGUMENTS

Hjpeg image Handle to JPEG compressed image sequence.

DESCRIPTION

This function calculates the sequence length of a motion JPEG file after the function TMG JPEG file open
has been called. It is designed to be used in conjunction with the Crunch JPEG hardware replay functions
(CRUNCH sequence_replay).

The number of frames is calculated by scanning the file for the number of restart markers in the JPEG data.
(Restart markers are used to signify the end of a frame in a sequence of JPEG frames when stored in a single
JPEG/JFIF file.)

If TMG JPEG file read is used (instead of TMG JPEG file open), then the number of frames of JPEG data
is automatically calculated and stored in Hjpeg image, as part of the operation of TMG JPEG file read.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment uses open a (motion) JPEG file and calculates the sequence length ready for
replay:

TMG_ i nage_set _i nfil enane(hJPEQ mage, “sequence.jpg”);
TMG_JPEG fil e_open(hJPEGQ mage) ;

/* Now fill in the internal TMG i nage paranmeter “numfranes” */
TMG_JPEG sequence_cal c_I| engt h(hJPEGQ nage) ;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG file read, TMG JPEG file open, TMG JPEG sequence set start frame.

TMG Programmer’s Manual v4.0.1 TMG _JPEG sequence extract frame 155

TMG_JPEG_sequence_extract_frame

USAGE
Terr TMG JPEG sequence_extract frame(Thandle Hin_image, Thandle Hout _image, ui32 frame)

ARGUMENTS
Hin_image Handle to JPEG compressed image sequence.
Hout image Handle to output (single frame) JPEG image.
frame The number of the frame to extract (from 1..N).
DESCRIPTION

This function copies a single JPEG image from a JPEG sequence in Hin_image to Hout _image. The frame
number to copy is given by frame num.

Hout _image must be a JPEG image (i.e. created using TMG JPEG image create). Any JPEG image
memory in Hout image will be destroyed and new memory allocated to precisely match the size of the
extracted frame (unless the memory is locked).

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment extracts the 8th frame of a 16 frame motion JPEG sequence and saves it as an
individual file:

TMG_ i mage_set _i nfil enane(hJPEQ mage, “sequence.jpg”);
TMG _JPEG fil e_read(hJPEGQ mage) ;

hQut | rage = TMG _JPEG i mage_create();

TMG_JPEG sequence_extract _franme(hJPEQ mage, hQutlnmage, 8);
TMG_ i nage_set _outfil enane(hQutl mage, “frane08.jpg”);

TMG JPEG file_wite(hQutlmge, TMG RUN);

BUGS / NOTES

The starting frame (set using TMG JPEG sequence_set start frame) gets changed as a side effect of using
this function.

This function only works on JPEG sequence files stored in memory - i.e. the JPEG file must have been read in
using TMG _JPEG file read.

SEE ALSO
TMG JPEG file read, TMG JPEG file open, TMG JPEG sequence set start frame.

TMG Programmer’s Manual v4.0.1 TMG_JPEG sequence set_start frame 156

TMG_JPEG_sequence_set_start_frame

USAGE
Terr TMG JPEG sequence_set_start frame(Thandle Hjpeg image, ui32 start_frame)

ARGUMENTS
Hjpeg image Handle to JPEG compressed image sequence.
start_frame Desired starting frame.

DESCRIPTION

This function sets the starting frame ready for replaying a sequence using the function
CRUNCH sequence_replay (JPEG hardware acceleration function). It will work on Hjpeg image whether
the image is in memory or on file. It works by scanning the file looking to the inter-frame (restart) markers.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the Crunch Library Programmer’s Manual for example code and the file “seq.c” available with the
Snapper SDK.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG sequence calc length.

TMG Programmer’s Manual v4.0.1 TMG_JPEG _set image 157

TMG_JPEG_set_image

USAGE
Terr TMG JPEG set image(Thandle Himage, Thandle Hjpeg image)

ARGUMENTS

Himage Handle to the input image.
Hjpeg image Handle to the output JPEG image.

DESCRIPTION

This function is sets up the JPEG parameters in Hjpeg image based on the raw image parameters in Himage.
This function is rarely needed in a user application, but a novel use is given in the example below.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment is an example of how to “reconstruct” a JPEG file ready for decompression
from only the JPEG data, the image width, height and (original) Q factor:

/* The image is a colour 256 x 256 inage */

/* NunmBytes contains the amobunt of the JPEG data */

/* pJPEGData points to the JPEG data */

hJPEG mage = TMG JPEG i mage_create();

TMG i mage_set _par anet er (hJPEGA nage, TMs W DTH, 256);

TMG_ i nage_set _par anet er (hJPEG nage, TMG HEI GHT, 256);

TMG i nage_set _par anmet er (hJPEG nage, TMG Pl XEL_FORNMAT, TMG RGB24);
TMG_JPEG set _i mage(hJPEG mage, hJPEGQ nage) ;

TMG JPEG set _Quality_factor(hJPEGQ nage, 32);

TMG_JPEG nmake_Q t abl es(hJPEG mage) ;

TMG_JPEG set _defaul t _H t abl es(hJPEG nage) ;

TMG_ i mage_set _ptr (hJPEGQ mage, TMG JPEG DATA, pJPEGDat a) ;

TMG_ i nage_set _par anmet er (hJPEG nage, TMG JPEG NUM BYTES_DATA, NunBytes);
/* hJPEA mage is now a valid JPEG i mage */

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG image create.

TMG Programmer’s Manual v4.0.1 TMG_JPEG set Quality factor 158

TMG_JPEG_set_Quality_factor

USAGE
Terr TMG _JPEG set Quality factor(Thandle Hjpeg image, uil6 Q_factor)

ARGUMENTS

Hjpeg image Handle to JPEG image.

O factor An integer representing image quality after compression from 1 to 100.
DESCRIPTION

Sets the JPEG quality factor for compression. This parameter is only used in compression. It represents the
quality of the compressed image and is therefore related to compression ratio, i.e. if a high quality factor is
set, the compressed image quality will be high, and the compression ratio not as high as it would be if a lower
quality factor was used. The default quality factor is 32, which results in the coefficients in the standard Q
(Quantization) tables, as defined in the JPEG specification, being halved. i.e. the Quality factor is normalised
to 16. This is common practice in JPEG software packages. The range of the quality factor is from 1 to 400,
although numbers above 100 will give very little improved quality, and low (typically 6:1) compression
ratios. Using the default Quality factor of 32 results in an image which is “usually nearly indistinguishable
from the original” (quote from the JPEG Specification).

The default quality factor of 32 is used if this function (or TMG JPEG set Quantization_factor) is not
called. Note that a default quality factor of 32 is equivalent to a default quantization factor of 50.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets the quantization factor:
TMG _JPEG set _Quality_factor(H nage, 20);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG set Quantization factor.

TMG Programmer’s Manual v4.0.1 TMG _JPEG_set Quantization factor 159

TMG_JPEG_set_Quantization_factor

USAGE
Terr TMG JPEG set Quantization_factor(Thandle Hjpeg image, uil6 Q_factor)

ARGUMENTS
Hjpeg image Handle to JPEG image.
O factor JPEG quantization factor.
DESCRIPTION

Sets the JPEG quantization factor for compression. This parameter is only used in compression. It is used to
generate the quantization table which defines the number of quantization levels at which the luminance and
chrominance frequencies are quantized to. In simple terms, a higher quantization factor means lower image
quality and vice-versa. The quantization factor is normalised to 50, which is consistent with other JPEG
compression systems. This means that when set to 50, the luminance and chrominance quantization tables are
identical to those in the JPEG Specification.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code sets the quantization factor:
TMG_JPEG set _Quanti zati on_f act or (Hbase, 100);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG JPEG set Quality factor.

TMG Programmer’s Manual v4.0.1 TMG_LUT apply 160

TMG_LUT _apply

USAGE
Terr TMG LUT apply(Thandle Hin image, Thandle Hout image, Thandle hLUT, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
hLUT Handle to a TMG LUT structure.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function performs a LUT operation on Hin_image to produce an output image Hout image. This
function can be used to enhance an image through the use of brightness, contrast, gamma and individual
colour controls (for colour balancing). The function TMG LUT generate is used to generate the LUT before
this function is called (and TMG LUT create to create it prior to generation).

The functions accepts the following image types: TMG YUV422, TMG Y8, TMG RGB24, TMG RGBIG6,
TMG RGBI15 and TMG _RGBS. If the individual colour intensities have been changed from their default
values, the function operates slower with a YUV image than an RGB image. This is because it must convert
from YUYV colour space to RGB colour space in order to use the LUTs. Therefore it is usually better to
operate on the RGB image - i.e. convert to (or use) a RGB image before using TMG LUT apply.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG LUT create, TMG LUT generate.

TMG Programmer’s Manual v4.0.1 TMG_LUT create 161

TMG_LUT _create

USAGE
Terr TMG _LUT create(ui32 num_elements, uil6 element size)

ARGUMENTS
num_elements The size of the look up table in terms of the number of elements.
element size The size of each element in bytes - must be either 1 or 2.
DESCRIPTION

This function creates a Ttrmg LUT structure by the use of malloc, and returns a handle to that structure. The
LUT structure contains four independent LUTs - one for luma (grayscale data) and one for red, green and
blue image data. Separate LUTs for red, green and blue allow colour balancing as well as overall
brightness/contrast variation.

The size of the LUT is determined by the two parameters num_elements and element size. num_elements
must be less than or equal to 256 if element size is 1, or less than or equal to 65536 if element size is 2.

The handle to this structure is used by the LUT function TMG LUT apply.

RETURNS

On success a valid handle is returned in the lower 16 bits of the return value (the upper 16 bits will be 0). On
failure an error code will be returned in the upper 16 bits as defined in the Error Returns section at the start of
this manual.

EXAMPLES

The following code creates a LUT and gets a handle to it:
Thandl e hLUT; /* Handle to LUT */

/* Create a LUT of 256 elenents (8 bits in, 8 bits out) */

if (ASL_is_err(hLUT = TM5 LUT _create(256, 1))
printf(“Failed to create LUT");

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG LUT destroy, TMG LUT apply, TMG LUT generate, TMG LUT get ptr.

TMG Programmer’s Manual v4.0.1 TMG_LUT _destroy 162

TMG_LUT _destroy

USAGE
Terr TMG LUT destroy(Thandle hLUT)

ARGUMENTS
hLUT Handle to a TMG LUT structure or TMG ALL HANDLES.

DESCRIPTION
Destroys a Ttmg LUT structure by freeing all the memory associated with that structure.

If the parameter TMG ALL HANDLES is used, all previously created LUT structures are destroyed and their
associated handles freed.

TMG image destroy(TMG ALL HANDLES) will destroy all TMG LUT structures by calling
TMG _LUT destroy for all LUT handles. This is a convenient way of destroying everything with just one
function call.

RETURNS
ASL_OK.

EXAMPLES

The following code destroys a previously created LUT:
Thandl e hLUT; /* Handle to LUT */

TMG_LUT _destroy(hLUT);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG LUT create, TMG image_destroy.

TMG Programmer’s Manual v4.0.1 TMG _LUT _generate 163

TMG_LUT_generate

USAGE
Terr TMG _LUT generate(Thandle hLUT, il6 brightness, il6 contrast, il6 gamma, il6 ri, i16 gi, il6 bi)

ARGUMENTS
brightness Desired brightness setting (from 0 to 200, default 100).
contrast Desired contrast setting (from 0 to 200, default 100).
gamma Desired gamma setting (from 0 to 400, default 100).
ri Desired red intensity (from 0 to 200, default 100).
gi Desired green intensity (from 0 to 200, default 100).
bi Desired blue intensity (from 0 to 200, default 100).
DESCRIPTION

This function generates the actual LUT data in the LUT structure referenced by 2ALUT. This function must be
called before the function TMG LUT apply is used to perform a LUT operation. If called with the default
values, the resulting LUTs will contain straight lines and therefore have no effect on the image. If the LUT
function is going to operate on a grayscale image, then 77, gi and bi have no effect and should be set to zero.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

See the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG LUT create, TMG LUT apply, TMG LUT get ptr.

TMG Programmer’s Manual v4.0.1 TMG _LUT get ptr 164

TMG_LUT_get_ptr

USAGE
void *TMG LUT get ptr(Thandle hLUT, uil6 colour)

ARGUMENTS
hLUT Handle to a TMG LUT structure
colour Colour plane of the LUT required. One of TMG _GRAY, TMG RED, TMG _GREEN or
TMG BLUE.
DESCRIPTION

This function returns the pointer to the actual look up table data for that particular colour. This can be useful,
if for example, the TMG LUT generate function was being used to generate data for another function - for
example programming hardware LUTs.

The returned pointer type must be cast the pointer type that reflects the size of the data in the LUT. If the
LUT has an element size of 1 (see TMG _LUT create), then the result from TMG _LUT get ptr should be cast
to ui8*. If the element size is 2, then the result should be cast to /M UlI16*. (For all operating systems apart
from Windows 3.1, IM UI16* is equivalent to uil6*.)

RETURNS
A pointer to the LUT data on success, otherwise NULL.

EXAMPLES

The following code gets the pointer from a LUT structure:
ui 8* pLUT; /* Pointer to 256 el enent LUT. */

hLUT = TMG LUT create(256, 1);

bLUT (ui 8) TMG LUT get _ptr(hLUT);

See also the extended examples in the “Sample Applications” section.

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG _LUT create, TMG LUT generate.

TMG Programmer’s Manual v4.0.1 TMG_SPL 2fields_to frame 165

TMG_SPL_2fields_to _frame

USAGE

Terr TMG SPL 2fields to_frame(Thandle Himagel, Thandle Himage2, Thandle Hout image, uil6
TMG action)

ARGUMENTS
Himagel Handle to an input image - field 1
Himage?2 Handle to an input image - field 2
Hout image Handle to the output image.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function is similar to the function TMG SPL field to frame, but takes two input images which represent
field 1 and field 2 of a complete frame. These images are interlaced to provide a complete frame,

Hout image. This function is likely to be used in conjunction with the Snapper sequence acquisition mode,
in which fields are acquired in a real-time sequence to separate images. This function can be used to re-
construct full frames.

If the internal image flag TMG HALF ASPECT is set, the function uses the parameter TMG FIELD ID to
determine which field is which, so it can correctly interlace them. If this flag is not set, then Himagel will be
assumed to be field 1 and written to lines 1, 3, 5 etc in the output image, and Himage2 will be written to lines
2,4, 6 etc.

For parameter and flag information, see TMG image set parameter and TMG image set flags respectively.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to reconstruct a frame sequence from a sequence of fields:

/* hlmages is an array of fields captured in a sequence from
* Snapper-24. This code re-interlaces them and di splays the
* resulting franes.
*/
for (n = 0; n < SequenceLength; n += 2) {
TMG_SPL_2fiel ds_to_frame(hl mages[n], hlnmages[n+1l], hTenpl mage, TMG RUN);
TMG convert _to_RGB16(hTenpl mage, hQutl mage, TMG RUN);
TMG_di spl ay_i mage(hDi spl ay, hCQutlnmage, TMG RUN);
}

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG SPL field to frame.

TMG Programmer’s Manual v4.0.1 TMG_SPL Data32 to Y8 166

TMG_SPL_Data32 to Y8

USAGE

Terr TMG _SPL Data32 to Y8(Thandle Hin_image, Thandle Hout image, uil6 wShiftRight, uil6
TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.

wShifiRight The number of bitwise right shift operations to apply to each 32 bit pixel in Hin_image.

TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.

DESCRIPTION

This function takes a 32 bit input image, which typically contains data from a digital camera, and facilitates
the conversion to 8 bit grayscale. This is useful when, for example, the image data from the camera is 12 bit
— this function allows it to be conveniently converted to an 8 bit format suitable for display etc. Care must be
taken with endian issues and the source data format.

RETURNS
ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.
EXAMPLES
The following code fragment shows how to convert 12 bit data to an 8 bit grayscale image suitable for
display:
/* hSrclmage contains a 12 bit grayscale image — we'll convert the
* image data to 8 bit so that we can viewit.
*
/

TMG_SPL_Dat a32_t o_Y8(hSrcl nage, hY8l mage, 4, TMG RUN);
TMG di spl ay_i mage(hDi spl ay, hY8l mage, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG_SPL_XXXX32 to_Y8.

TMG Programmer’s Manual v4.0.1 TMG_SPL field to frame 167

TMG_SPL _field_to_frame

USAGE
Terr TMG _SPL _field to_frame(Thandle Hin_image, Thandle Hout image, uil6 TMG action)

ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes the input image, treats it as if it is one video field of an interlaced frame, and duplicates
the other field resulting in a complete frame. In other words it doubles the vertical size of the image by
repeating lines as follows:

Line 1 of the input image is duplicated to form lines 1 and 2 in the output image;
Line 2 of the input image is duplicated to form lines 3 and 4 in the output image etc.

This function might be needed in an application that acquires single video fields, which subsequently have to
be viewed as a normal image.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to use the function:

/* carpark.tif is a single field of video grabbed froma renote
* security canera - we use TMG SPL field to frane to viewit.
>/

TMG_ i mage_set _infil ename(hl nage, “carpark.tif”);

TMG_ i nage_set _par anet er (hl mage, TMG _HElI GHT, TMG_AUTO_HEI GHT) ;

TMG_ i mage_r ead(hl mage, TMG NULL, TMG RUN);

TMG SPL_field to_frame(hl mage, hQutlnmage, TMG _RUN);

TMG_di spl ay_i mage(hDi spl ay, hQutlmage, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG SPL 2fields to frame, TMG IP pixel rep, TMG IP subsample.

TMG Programmer’s Manual v4.0.1 TMG_SPL _HSI to RGB pseudo_colour

168

TMG_SPL_HSI to_ RGB_pseudo_colour

USAGE

Terr TMG SPL HSI to RGB pseudo_colour(Thandle Hin_image, Thandle Hout image, uil6
TMG action)

ARGUMENTS

Hin_image Handle to the input 7TMG HSI image.
Hout image Handle to the output TMG RGB24 image.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be

aborted.

DESCRIPTION

This function simply maps the HSI planes to RGB planes. That is, Hue is mapped directly to Red, Saturation
to Green and Intensity to Blue. This can be useful when examining HSI images, as it allows an HSI image to

be put into a representation that standard image viewing packages can recognise and hence view — for

example to compute and display histograms for each HSI component.

RETURNS

ASL _OK on success, otherwise an error return as defined in the Error Returns section at the start of this

manual.

EXAMPLES

The following code fragment shows how to convert an image to HSI format and then to a pseudo colour RGB

format suitable for saving as a TIFF file:

TMG_ i mage_r ead(hl nl mage, TMG_NULL, TMG _RUN);

TMG_i mage_convert (hl nl mrage, hYuvl mage, TMG YUv422, 0, TMG RUN);

TMG_ i mage_convert (hYuvl nage, hHsilnmage, TMG HSI, 0, TMG RUN);

TMG _SPL_HSI _t o_RGB_pseudo_col our (hHsi | mage, hPseudoRgbl nage, TMG RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG SPL YUV422 to RGB pseudo colour, TMG image convert.

TMG Programmer’s Manual v4.0.1 TMG_SPL YUV422 to RGB_pseudo_colour 169

TMG_SPL_YUV422 to RGB_pseudo_colour

USAGE

Terr TMG SPL YUV422 to RGB pseudo colour(Thandle Hin image, Thandle Hout image, uil6
TMG action)

ARGUMENTS

Hin_image Handle to the input TMG YUV422 image.
Hout image Handle to the output TMG RGB24 image.

TMG action Either TMG RUN for normal operation or TMG RESET if the operation needs to be
aborted.

DESCRIPTION

This function simply maps the YUV 4:2:2 planes to RGB planes. That is, luminance (YY) is mapped directly
to Red, the U component to Green and the V component to Blue. This can be useful when examining YUV
4:2:2 images, as it allows a YUV 4:2:2 image to be put into a representation that standard image viewing
packages can recognise and hence view — for example to compute and display histograms for each YUV 4:2:2
component.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to convert an image to YUV 4:2:2 format and then to a pseudo
colour RGB format suitable for saving as a TIFF file:

TMG_ i mage_r ead(hl nl mage, TMG _NULL, TMG _RUN);
TMG_i mage_convert (hl nl nrage, hYuvl mage, TMG YUWv422, 0, TMG RUN);
TMG_SPL_YWV422 t o _RGB_pseudo_col our (hYuvl nage, hPseudoRgbl mage, TMG _RUN);

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG SPL HSI to RGB pseudo colour, TMG image convert.

TMG Programmer’s Manual v4.0.1 TMG _SPL XXXX32 to Y8 170

TMG_SPL_XXXX32_to_Y8

USAGE
Terr TMG SPL XXXX32 to Y8(Thandle Hin_image, Thandle Hout image, uil6 plane, uil6
TMG action)
ARGUMENTS
Hin_image Handle to the input image.
Hout image Handle to the output image.
plane 1, 2, 3 or 4 representing the plane to strip out of the input image.
TMG action Either TMG RUN for normal operation or TMG_RESET if the operation needs to be
aborted.
DESCRIPTION

This function takes a multi-planar input image - for example TMG RGBX32, and strips out one component,
for example the red component, and stores it as a grayscale image in Hout image.

plane refers to the byte position in the RGB colour format (see the example below).

This function can be used if, for example, a colour image is acquired from colour acquisition hardware (three
channel RGB) connected to three monochrome cameras and the grayscale image from one camera is required.
See the example below.

RETURNS

ASL_OK on success, otherwise an error return as defined in the Error Returns section at the start of this
manual.

EXAMPLES

The following code fragment shows how to use the function:

/* hSrclmage contains a colour inmage in the form RGBX32 which actually
* represents three grayscal e i mages acquired from col our acquisition
* hardware connected to three synchroni zed nmonochrone caner as.

*/
switch (Col ourPl ane) {
case RED: /* read out correct nono plane fromred channel */
TMG_SPL_XXXX32_to_Y8(hSrcl mage, hG aylmage, 1, TMG RUN);
br eak;
case GREEN:
TMG_SPL_XXXX32_t o_Y8(hSrcl mage, hG ayl mage, 2, TMG RUN);
br eak;
case BLUE:
TMG_SPL_XXXX32_t o_Y8(hSrcl mage, hG ayl mage, 3, TMG RUN);
br eak;

BUGS / NOTES

There are no known bugs.

SEE ALSO
TMG SPL Data32 to Y8.

	Introduction
	Concepts
	OVERVIEW
	A SIMPLE EXAMPLE
	MEMORY ALLOCATION
	IMAGE DATA VERSUS JPEG IMAGE DATA
	ADDING CUSTOM FUNCTIONS
	VIDEO FIELDS AND THE “TMG_HALF_ASPECT” FLAG

	Library Structure
	Pixel Formats
	INTERNAL IMAGE TYPES
	ACCESSING THE IMAGE DATA

	Error Returns
	BAD_XXX ERRORS

	Operating System Issues
	Image Display Functions and Examples
	IMAGE DISPLAY UNDER WINDOWS (INCLUDES WINDOWS€NT, WINDOWS€95 AND WINDOWS€3.1)
	IMAGE DISPLAY UNDER DOS
	IMAGE DISPLAY UNDER X€WINDOWS
	IMAGE DISPLAY UNDER MACOS

	Sample Applications
	A SIMPLE TMG PROCESSING EXAMPLE
	TEST PATTERN GENERATION
	SOFTWARE JPEG DECOMPRESSION AND DISPLAY
	SOFTWARE JPEG COMPRESSION
	CONVERTING A 24 BIT COLOUR IMAGE TO A PALETTED IMAGE
	DISPLAYING COLOUR AND GRAYSCALE IMAGES SIMULTANEOUSLY TO A PALETTED DISPLAY
	LOOK UP TABLE EXAMPLES - USING TMG LUT FUNCTIONS
	CHROMA KEYING

	Function List
	GENERAL PURPOSE FUNCTIONS
	PIXEL FORMAT CONVERSION FUNCTIONS (AND RELATED)
	IMAGE READING AND WRITING FUNCTIONS
	COLOURMAP/PALETTE RELATED FUNCTIONS
	IMAGE PROCESSING FUNCTIONS
	SPECIAL PROCESSING FUNCTIONS
	JPEG RELATED FUNCTIONS
	CHROMA KEYING AND RELATED FUNCTIONS
	LOOK UP TABLE (LUT) FUNCTIONS
	GENERIC DISPLAY FUNCTIONS

	TMG_CK_calibrate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_chroma_key
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_create
	USAGE
	ARGUMENTS

	TMG_CK_destroy
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_destroy_UV_to_hue_LUT
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_generate_UV_to_hue_LUT
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_get_component
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_get_parameter
	USAGE
	ARGUMENTS

	TMG_CK_get_YUV_values, �TMG_CK_get_YUV_values_RGB
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_CK_set_parameter
	USAGE
	ARGUMENTS

	TMG_cmap_copy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_generate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_get_occurrences
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_get_RGB_colour
	USAGE
	ARGUMENTS

	TMG_cmap_find_closest_colour
	USAGE
	ARGUMENTS

	TMG_cmap_is_grayscale
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_colour
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_RGB_colour
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_cmap_set_type
	USAGE
	ARGUMENTS

	TMG_display_box_fill [DOS]
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_display_clear [X Windows, DOS]
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_display_cmap [DOS]
	USAGE
	ARGUMENTS

	TMG_display_cmap_install [X Windows, DOS]
	BUGS / NOTES
	SEE ALSO

	TMG_display_create
	USAGE
	ARGUMENTS

	TMG_display_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_direct_w31 [Windows 3.1]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_draw_text [DOS]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_hWnd [Windows]
	USAGE
	ARGUMENTS

	TMG_display_get_paint_hDC [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_get_ROI
	USAGE
	ARGUMENTS

	TMG_display_image
	USAGE
	ARGUMENTS
	DOS
	WINDOWS
	X WINDOWS
	MacOS

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_init
	USAGE
	ARGUMENTS
	WINDOWS
	DOS
	X WINDOWS
	MacOS

	RETURNS
	EXAMPLES
	WINDOWS
	DOS
	X WINDOWS
	MacOS

	BUGS / NOTES
	SEE ALSO

	TMG_display_print_DIB [Windows]
	USAGE
	ARGUMENTS

	TMG_display_set_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_font [DOS]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_hWnd [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_mask [MAC]
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	SEE ALSO

	TMG_display_set_paint_hDC [Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_ROI
	USAGE
	ARGUMENTS
	MODE PARAMETER LIST

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_display_set_Xid [X Windows]
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_calc_total_strips
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_check
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_generate
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_load
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_conv_LUT_save
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_convert
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	SIMPLE PIXEL FORMAT CONVERSION
	CONVERSION TO YUV 4:2:2
	CONVERSION FROM YUV 4:2:2 TO RGB16 - WITHOUT A LUT
	CONVERSION FROM YUV 4:2:2 TO RGB16 - USING A LUT
	CONVERSION FROM YUV 4:2:2 TO PALETTED
	CONVERSION FROM PALETTED
	CONVERSION FROM GRAYSCALE TO PALETTED - USING A LUT
	CONVERSION FROM RGB24 TO PALETTED
	CONVERSION TO DIB

	BUGS / NOTES
	SEE ALSO

	TMG_image_copy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_create
	USAGE
	ARGUMENTS

	TMG_image_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_find_file_format
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_free_data
	USAGE
	ARGUMENTS

	TMG_image_get_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_get_infilename, �TMG_image_get_outfilename
	USAGE
	ARGUMENTS

	TMG_image_get_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_get_ptr
	USAGE
	ARGUMENTS

	TMG_image_is_colour
	USAGE
	ARGUMENTS

	TMG_image_malloc_a_strip
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_move
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_read
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_flags
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_infilename, �TMG_image_set_outfilename
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_parameter
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_image_set_ptr
	USAGE
	ARGUMENTS

	TMG_image_write
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_IP_crop
	USAGE
	ARGUMENTS

	TMG_IP_extract_region
	USAGE
	ARGUMENTS

	TMG_IP_filter_3x3
	USAGE
	ARGUMENTS

	TMG_IP_generate_averages
	TMG_IP_histogram_clear
	USAGE
	ARGUMENTS

	TMG_IP_histogram_filter
	USAGE
	ARGUMENTS

	TMG_IP_histogram_generate
	USAGE
	ARGUMENTS

	TMG_IP_histogram_match
	TMG_IP_mirror_image
	USAGE
	ARGUMENTS

	TMG_IP_pixel_rep
	TMG_IP_rotate_image
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_IP_subsample
	USAGE
	ARGUMENTS

	TMG_IP_threshold_grayscale
	USAGE
	ARGUMENTS

	TMG_JPEG_buffer_read
	TMG_JPEG_buffer_write
	USAGE
	ARGUMENTS

	TMG_JPEG_build_image
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_compress
	USAGE
	ARGUMENTS

	TMG_JPEG_compress_image_to_image
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_decompress
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_decompress_image_to_image
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_close
	USAGE
	ARGUMENTS

	TMG_JPEG_file_open
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_read
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_file_write
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_image_create
	USAGE
	ARGUMENTS

	TMG_JPEG_sequence_build
	TMG_JPEG_sequence_calc_length
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_sequence_extract_frame
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_sequence_set_start_frame
	USAGE
	ARGUMENTS

	TMG_JPEG_set_image
	USAGE
	ARGUMENTS

	TMG_JPEG_set_Quality_factor
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_JPEG_set_Quantization_factor
	USAGE
	ARGUMENTS

	TMG_LUT_apply
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_create
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_destroy
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_generate
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_LUT_get_ptr
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_SPL_2fields_to_frame
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_SPL_Data32_to_Y8
	USAGE
	ARGUMENTS

	TMG_SPL_field_to_frame
	USAGE
	ARGUMENTS

	TMG_SPL_HSI_to_RGB_pseudo_colour
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	TMG_SPL_YUV422_to_RGB_pseudo_colour
	USAGE
	ARGUMENTS

	TMG_SPL_XXXX32_to_Y8
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

