
v4.0.1

Bus Interface Library
(for ISA-BIB, PCI-BIB and SBus-BIB)

Programmer’s Manual

DataCell Limited

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Disclaimer

While every precaution has been taken in the preparation of this manual, DataCell Ltd assumes no responsibility for
errors or omissions. DataCell Ltd reserves the right to change the specification of the product described within this
manual and the manual itself at any time without notice and without obligation of DataCell Ltd to notify any person
of such revisions or changes.

Copyright Notice

Copyright  1994-1999 DataCell Ltd and Active Silicon Ltd. All rights reserved. This document may not in whole
or in part, be reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or
translated into any language or computer language without the prior written consent of DataCell Ltd.

Trademarks

“Apple”, “Macintosh” and “MacOS” are trademarks of Apple Computer Inc. “AMCC” is a registered trademark of
Applied Micro Circuits Corporation. “Dallas” is a registered trademark of Dallas Semiconductor Corporation.
“Dell” is a registered trademark of Dell Computer Corporation. “Flash Graphics” and “X-32VM” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks” and “CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS”, “Windows”, “Windows NT”, “Windows 95”, “Windows 98”,
“Win32”, “Visual C++” are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is a registered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris”
are registered trademarks of Sun Microsystems Inc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks” and “Tornado” are registered trademarks of Wind River
Systems Inc. “Xilinx” is a registered trademark of Xilinx.
All other trademarks and registered trademarks are the property of their respective owners.

Part Information

Part Number: SNP-MAN-BASE-LIB

Version v4.0.1 September 1999

Printed in the United Kingdom.

Contact Details

Europe & ROW

USA

Web
Sales
Support

Web
Sales
Support

www.datacell.co.uk
info@datacell.co.uk
techsupport@datacell.co.uk

www.datacell.com
info@datacell.com
techsupport@datacell.com

Head Office:
DataCell Limited.
Falcon Business Park, 40 Ivanhoe Road,
Finchampstead, Berkshire, RG40 4QQ, UK

Tel +44 (0) 1189 324324
Fax +44 (0) 1189 324325

http://www.datacell.co.uk/
http://www.datacell.co.uk/
mailto:info@datacell.co.uk
mailto:techsupport@datacell.co.uk
http://www.datacell.com/
http://www.datacell.co.uk/
mailto:info@datacell.com
mailto:techsupport@datacell.com

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Bus Interface Board Programmer’s Manual v4.0.1 i

Table of Contents

Introduction... 1

Function Overview.. 2

Error Returns... 3

Sample Application... 4

Function List ... 5

BASE_create... 7

BASE_delay.. 9

BASE_destroy... 10

BASE_get_parameter.. 11

BASE_get_property .. 13

BASE_PhysMem_Lock .. 15

BASE_PhysMem_Unlock... 18

BASE_serial_get_parameter ... 19

BASE_serial_set_parameter.. 21

BASE_serial_receive_buffer... 23

BASE_serial_transmit_buffer ... 25

BASE_set_ptr ... 27

BASE_set_timer.. 28

Bus Interface Board Programmer’s Manual v4.0.1 ii

Bus Interface Board Programmer’s Manual v4.0.1 Introduction 1

Introduction

This document describes the ‘BASE’ library of functions. This library is used to initialize the Bus Interface Board
and any Snapper plugged onto it. This library provides a platform and operating system independent API
(Application Programming Interface) to any Bus Interface Board in the Snapper range.

The BASE Library can, in many ways, be considered as a high level driver for Snapper libraries, although in reality
the individual drivers for the different operating systems (e.g. for Windows NT or Solaris etc) are at a lower level
than this library.

An overview of how to use the library is given in the next section.

Bus Interface Board Programmer’s Manual v4.0.1 Function Overview 2

Function Overview

To initialize a Bus Interface Board with or without a Snapper module fitted, BASE_create is used and the handle
returned is used to access the board. BASE_get_parameter is used to get the handle to the Snapper module (if fitted)
and this is used by the Snapper libraries to access the Snapper module.

BASE_get_property can be used to read back information about the Bus Interface Board.

BASE_destroy is used to free the handle and the associated memory.

Bus Interface Board Programmer’s Manual v4.0.1 Error Returns 3

Error Returns

All of the BASE library functions return a Terr apart from several Boolean functions. Terr is a 32 bit unsigned
integer, with the bit positions defined as follows:

31 to 24 Hardware identifier/revision (returned on error, otherwise 0 is returned). This is used to allow a top
level calling function to determine the library in which the error occurred, and is actually read from the
hardware itself.

Clearing bits 26 to 24 leaves the hardware identifier, and bits 26 to 24 give the hardware revision level.

23 to 16 This contains an error number, otherwise 0 if no error.

15 to 0 Function return value.

If a function call is successful, it returns ASL_OK (which is defined as 0) or the requested parameter. If an error
occurs, an error number is returned in bits 23 to 16 along with the library identifier in bits 31 to 24. See the
“Snapper Error Handling Programmer’s Manual” in the Developer’s Guide section of the Snapper Developer’s
Manual for more details on error returns.

Bus Interface Board Programmer’s Manual v4.0.1 Sample Application 4

Sample Application

The following code is a minimal program which uses a Snapper-DIG16 to capture an image from a Kodak Megaplus
1.4 camera and save it to a file. As with all sample code in this manual, error handling has been omitted for clarity,
but apart from not handling errors cleanly this is a usable program. The Snapper SDK includes sample applications,
both as executables and as source code, which provide a useful reference of ‘real’ code and are probably the best
starting point for developing custom applications.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hdig16; /* Handle to Snapper-DIG16 */
 Thandle Hbase; /* Handle to baseboard */
 Thandle Hvid_image; /* Handle to image */

 /* Initialize baseboard and Snapper module */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hdig16 = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);
 Hvid_image = TMG_image_create();

 /* Set required Snapper mode */
 DIG16_initialize(Hdig16, DIG16_KODAK_MPLUS14, 8);

 /* Set up image parameters */
 DIG16_set_image(Hdig16, Hvid_image);

 /* Capture image and write it to a file */
 DIG16_capture_to_image(Hdig16, Hvid_image, DIG16_START_AND_WAIT);
 TMG_image_set_outfilename(Hvid_image, "image.tif");
 TMG_image_write(Hvid_image, TMG_NULL, TMG_TIFF, TMG_RUN);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Bus Interface Board Programmer’s Manual v4.0.1 Function List 5

Function List

BASIC FUNCTIONS

BASE_create
BASE_destroy
BASE_get_parameter
BASE_get_property

SERIAL COMMUNICATIONS FUNCTIONS

BASE_serial_get_parameter
BASE_serial_set_parameter
BASE_serial_receive_buffer
BASE_serial_transmit_buffer

MEMORY HANDLING FUNCTIONS

BASE_PhysMem_Lock
BASE_PhysMem_Unlock
BASE_set_ptr

MISCELLANEOUS FUNCTIONS

BASE_delay
BASE_set_timer

The functions are described in alphabetical order in the following pages.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_create 7

BASE_create

USAGE

Terr BASE_create(ui16 base_address)

ARGUMENTS

base_address For ISA boards this parameter is the actual ISA bus address, for example, 0x300. For PCI
and SBus boards the parameter can be BASE_AUTO or
BASE_DEVICE | <board number>.

DESCRIPTION

This function initializes the Bus Interface Board and Snapper, and returns a unique handle to be used for
accessing the board. For SBus and PCI Bus Interface Boards, base_address should be BASE_AUTO or
BASE_DEVICE. For ISA Bus Interface Boards, base_address should be the actual hardware address
corresponding to that set by the on-board jumpers J10, J11 and J12. (See the Snapper Installation Guide for
more details on these jumper settings). The Snapper handle, needed for the Snapper libraries, can be
retrieved using BASE_get_parameter.

BASE_AUTO will automatically open the first available PCI or SBus bus interface board. If one or more
boards are already open, the next available board will be opened. Thus for opening multiple boards, either
BASE_AUTO could be used repeatedly or BASE_DEVICE, ‘OR’ed with the number of the board to open.

If using BASE_DEVICE note that the device number does not always match the physical slot number on the
motherboard. This is at the discretion of the hardware manufacturer.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_INCOMPATIBLE_LIBRARIES The different Snapper libraries and drivers all contain version
information. On calling BASE_create, the main Snapper library
compares version information with the other libraries and returns
an error if they do not match.
If an application receives this error it means that the current
Snapper installation is corrupt and must be re-installed.

ASLERR_NOT_SUPPORTED This error is generated if the application attempts to create more
than one handle reference to a single hardware instance.

ASLERR_OUT_OF_MEMORY This error is generated if there is insufficient system memory
available to contain the various internal structures associated with
the Base and Snapper libraries.

As BASE_create automatically configures and initializes a Snapper module that is fitted to it, this function may
return error messages associated with initializing a Snapper module.

EXAMPLES

The following code initializes a Bus Interface Board (PCI or SBus) and gets the respective handles to the Bus
Interface Board and the Snapper.

Thandle hSnapper; /* Handle to Snapper-DIG16 */
Thandle hBaseboard; /* Handle to baseboard */

/* Initialize baseboard and Snapper module */
if (ASL_is_err(hBaseboard = BASE_create(BASE_AUTO)))

Bus Interface Board Programmer’s Manual v4.0.1 BASE_create 8

 exit(0); /* failed to find/initialize board */
else
 hSnapper = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);

/* we now have valid handles to access the hardware */

The following code fragment initializes the second PCI or SBus device:

if (ASL_is_err(hBaseboard = BASE_create(BASE_DEVICE | 2)))
 exit(0); /* failed to find/initialize board */
else
 hSnapper = BASE_get_parameter(Hbase, BASE_MODULE_HANDLE);

BUGS / NOTES

The <baseboard handle> is returned in the lower 16 bits, if successful.

There are no known bugs.

SEE ALSO

BASE_destroy, BASE_get_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_delay 9

BASE_delay

USAGE

Terr BASE_delay(Thandle Hbase, ui32 dwMicroSecs)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

dwMicroSecs Timed delay in micro-seconds.

DESCRIPTION

This function generates a timed delay in micro-seconds. However the granularity of the timer is operating
system dependent, and small delay requests may generate significantly larger actual timed delays.

The difference between BASE_delay and BASE_set_timer is that the latter uses Snapper hardware resources,
but is not available on all Bus Interface Boards.

RETURNS

This function returns the following codes:

ASL_OK If successful.

EXAMPLES

To use the software timer in conjunction with a Snapper-24 to enable an active high pulse of 1ms:

/* Generate 1ms pulse */
SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_HI);
BASE_delay(Hbase, (ui32) 1000);
SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_LO);

BUGS / NOTES

Not only does the granularity of the time delay depend upon the specific operating system, but so also does
the behaviour. In threaded operating systems, (ie Unix, Windows NT, etc) the delay does not use any system
resources and frees the CPU to perform other processing. However on non threaded operating systems, the
CPU will not be available to perform other processing.

There are no known bugs.

SEE ALSO

BASE_destroy, BASE_get_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_destroy 10

BASE_destroy

USAGE

Terr BASE_destroy(Thandle Hbase)

ARGUMENTS

Hbase Handle to a Bus Interface Board or BASE_ALL_HANDLES to destroy all handles.

DESCRIPTION

Frees the memory associated with the Bus Interface Board structure, Hbase, and any associated Snapper
module. The handle is deassigned.

BASE_ALL_HANDLES is a useful parameter to use instead of the handle to destroy all Bus Interface Board
and Snapper handles with one function call.

This function should be called on program exit (or when the Bus Interface Board is no longer needed) to free
the memory allocated in internal structures.

RETURNS

This function returns the following codes:

ASL_OK If successful. As BASE_DESTROY is generally the last function
to be called, it does not generate any errors as there is nothing left
for an application to do.

EXAMPLES

The following code fragment destroys an individual board handle (i.e. a Bus Interface Board and its
associated Snapper):

Thandle hBaseboard = BASE_NULL_HANDLE;

/* Initialize and use the Snapper */
.
.

/* Then free the memory etc when we’ve finished */
BASE_destroy(hBaseboard);
hBaseboard = BASE_NULL_HANDLE; /* good practice to track status */

The following code fragment destroys all Bus Interface Board handles and all Snapper handles:

BASE_destroy(BASE_ALL_HANDLES);

BUGS / NOTES

There are no known bugs.

SEE ALSO

BASE_create.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_get_parameter 11

BASE_get_parameter

USAGE

Terr BASE_get_parameter(Thandle Hbase, ui16 parameter)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

parameter The parameter to return.

DESCRIPTION

This function returns various parameters from the internal structure associated with the Bus Interface Board
handle.

The parameters are as follows:

BASE_BASEBOARD_TYPE This returns the Bus Interface Board type and can be one of the
following (Type ui16):

BASE_PCI_BIB PCI Bus Interface Board, including
combined single board Snappers, ie
Snapper-PCI-SNP24, Snapper-PMC-
DIG16, etc

BASE_ISA_BIB ISA Bus Interface Board.

BASE_ISA_JPG ISA with JPEG compression - “Crunch-
ISA”.

BASE_SBUS_BIB SBus Bus Interface Board.

BASE_LIBRARY_REV_LEVEL This returns the revision level of the combined BASE and Snapper
libraries as a 32 bit unsigned integer. The format is M.mm.ss , ie
Major.minor.sub-minor. For example 32002 means 3.2 (Rev. 2).
(Type ui32).

BASE_ID_VALUE This returns the ID as read from the hardware, which distinguishes
between all the different baseboard variants. (Type ui8).

BASE_REV_VALUE This returns the board revision as read from the hardware, which
distinguishes between the hardware revisions of the particular
baseboard. (Type ui8).

BASE_IDREV_VALUE This returns the ID and board revision as read from the hardware,
which distinguishes between the different hardware revisions of the
different baseboard variants. (Type ui8).

BASE_MODULE_HANDLE The handle to the Snapper module. (Type Thandle, ui32).

BASE_MODULE_IDREV The hardware identifier and revision level of the Snapper module.
The “IDrev” is 8 bits - the upper 5 represent the ID (unique to each
board) and the lower 3 the revision level. (Type ui8).

BASE_MODULE_FAMILY_VALUE This returns the module family and can be one of the following
(Type ui8):

DIG16_FAMILY_ID Any rev of Snapper-DIG16 or
Snapper-PMC-DIG16

SNP24_FAMILY_ID Any rev of Snapper-24, Snapper-PCI24 or
Snapper-PMC24.

SNP16_FAMILY_ID Any rev of Snapper-16 or Snapper-PCI16.

SNP8_FAMILY_ID Any rev of Snapper-8, Snapper-PCI8 or
Snapper-PMC8.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_get_parameter 12

BASE_IRQ This parameter is set by the driver and represents the interrupt level
that has been allocated to the baseboard. It does not necessarily
match the physical interrupt, ie on an x86 PCI system the baseboard
may be assigned physical interrupt 12, but BASE_IRQ may return a
number different to this.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_BAD_PARAM The parameter value is invalid.

ASLERR_NOT_RECOGNIZED The ID value read back from the Snapper or baseboard hardware is not
recognized.

EXAMPLES

The following code initializes a Bus Interface Board (PCI or SBus) and determines which family of Snapper
boards is fitted.

Thandle hBaseboard; /* Handle to baseboard */
ui8 bSnapperFamily;

/* Initialize baseboard and Snapper module */
if (ASL_is_err(hBaseboard = BASE_create(BASE_AUTO)))
 exit(0); /* failed to find/initialize board */

/* Determine which Snapper family is fitted */
bSnapperFamily = BASE_get_parameter(Hbase, BASE_MODULE_FAMILY_VALUE);

switch ((int) bSnapperFamily)
{
 case (int) SNP8_FAMILY_ID:
 printf(“Snapper-8 type board found”); break;
 case (int) SNP16_FAMILY_ID:
 printf(“Snapper-16 type board found”); break;
 case (int) SNP24_FAMILY_ID:
 printf(“Snapper-24 type board found”); break;
 case (int) DIG16_FAMILY_ID:
 printf(“Snapper-DIG16 type board found”); break;
 default:
 printf(“New Snapper family requires software upgrade”); break;
}

BUGS / NOTES

The function returns a type Terr (ui32 - an unsigned 32 bit integer). Therefore a cast may be need depending
on the parameter type (given above for each parameter).

There are no known bugs.

SEE ALSO

BASE_get_property.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_get_property 13

BASE_get_property

USAGE

Terr BASE_get_property(Thandle Hbase, char *property, char *value)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

property A character string or name of the property to access.

value The property result string. (Must point to a buffer of at least 128 bytes.)

DESCRIPTION

This function returns various property strings associated with the Bus Interface Board. Not all property
strings are supported on all Bus Interface Boards. All the property strings are stored in PROM or NVRAM
(non-volatile RAM) on the Bus Interface Board, apart from the “mapdate” property, which is read from the
design currently in use for the data mapper FPGA (Field Programmable Gate Array).

PROPERTY

The property strings are as follows:

“mapdate” Data Mapper Date: This retrieves the date and time string associated with the current
data mapper in use. It is unlikely that this function will ever be needed, but it can be
useful to solve technical support issues. (i.e. the date string is used as a revision level.).
The data mapper performs pixel mapping in hardware to enable high speed display
update.

“mapfpga_name” Data Mapper Name: This retrieves the design name of the current data mapper in use.
It is unlikely that this function will ever be needed, but it can be useful to solve technical
support issues. Typical names are of the form “da00020a.rbt”.

“mapfpga” Data Mapper FPGA: This gives the type and speed of the “Data Mapper” FPGA (field
programmable gate array). The software drivers may use this information to determine
the maximum speed at which data can be acquired. For example, “3142A-4” means a
Xilinx XC3142A with speed grade ‘-4’.

“micro” Microcontroller: This gives the type and nominal clock speed of the microcontroller
fitted to the Bus Interface Board. The clock speed may be relevant when using serial
communications, as the serial interface may be embedded in the microcontroller . This
‘master’ clock speed is factory set, but it can be used to generate a variety of
communication baud rates. For example, “80C320-18.4” means a Dallas 80C320
microcontroller with an 18.432 MHz clock.

“micro_revlevel” Microcontroller Revision Level: This gives the revision of the microcontroller
firmware fitted to the Bus Interface Board.

“revlevel” Revision Level: This gives the overall revision level of the board, for example “2.1”.

“snapclk” Snapper Clock: This gives the type of Snapper clock generator provided on the Bus
Interface Board and the nominal master frequency. This clock generator is configured by
the software drivers to generate a Snapper read out frequency optimised to the type of
Snapper/Bus Interface Board combination. For example, “9107-03-14.3” means the
device type is a 9107-3 with a 14.31818MHz clock. “PCI” means that the Snapper clock
is generated from the PCI clock.

“pcidev” PCI Interface Device: This is used to determine the type and revision of the PCI
Interface device. For example “S5933QE” means AMCC S5933 PCI Interface Device,
die revision “QE”. This parameter is only supported on later PCI boards.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_get_property 14

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_NOT_IMPLEMENTED The parameter value is invalid or not supported on this baseboard.

EXAMPLES

The following code fragment prints out all the properties:

char szPropery[256];

BASE_get_property(hBase, “revlevel”, szPropery);
printf(“Revision Level String: %s”, szPropery);

BASE_get_property(hBase, “micro”, szPropery);
printf(“Microprocessor: %s”, szPropery);

BASE_get_property(hBase, “micro_revlevel”, szPropery);
printf(“Microprocessor Revision Level: %s”, szPropery);

BASE_get_property(hBase, “mapfpga”, szPropery);
printf(“Data Mapper FPGA: %s”, szPropery);

BASE_get_property(hBase, “mapfpga_name”, szPropery);
printf(“Data Mapper Name: %s”, szPropery);

BASE_get_property(hBase, “mapdate”, szPropery);
printf(“Data Mapper Rev: %s”, szPropery);

BASE_get_property(hBase, “snapclk”, szPropery);
printf(“Snapper Clock: %s”, szPropery);

BUGS / NOTES

There are no known bugs.

SEE ALSO

BASE_get_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_PhysMem_Lock 15

BASE_PhysMem_Lock

USAGE

Terr BASE_PhysMem_Lock(Thandle Hbase, void *pData, ui32 dwByteCount, ui32 **ppSGTable)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

pData Pointer to a virtual memory buffer allocated by the application.

dwByteCount Byte count of the virtual memory buffer pointed to by pData.

ppSGTable The address of a pointer whose value will be set to the address of a scatter-gather table on
completion.

DESCRIPTION

This function takes the virtual memory buffer pointed to by pData, and forces it to be resident in system
physical memory or “locked down”. It then allocates and initializes a buffer containing a structure of physical
address information, ie a scatter-gather table. Finally the pointer referenced by ppSGTable is set to point to
the base address of the scatter-gather table.

This method can be used to ensure that the virtual memory buffer is resident in physical memory before
acquisition commences. If the acquisition is running in a loop processing a number of images using locked
down memory, using BASE_PhysMem_Lock eliminates the need to generate a physical address mapping from
a virtual memory buffer each time the virtual memory buffer is accessed.

BASE_PhysMem_Unlock frees the scatter-gather table allocated by the function. The data structure of the
table, and macros to access it, are described in the file, “shared.h”

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_OUT_OF_MEMORY This error is generated if there is insufficient system memory available
to contain the Scatter-Gather table.

ASLERR_SYSTEM_CALL_FAILED The call to the underlying operating system to lock the virtual memory
buffer in physical memory, or to generate the Scatter-Gather table
failed.

EXAMPLES

The Snapper API is the same, except that BASE_set_ptr is used to send the target memory location
information to the driver. (The fact the internal structure member that holds the pointer will then not be
NULL is used by the library/driver to know what to do.)

The essential steps are:

• Build the scatter/gather table for the target device.

• Use BASE_set_ptr to give the Snapper driver access to the table. If this entry is NULL, then the driver
will DMA to host memory as usual.

• Use the DIG16 API as usual.

The following code is an example of this.

{

Bus Interface Board Programmer’s Manual v4.0.1 BASE_PhysMem_Lock 16

 ui8 *pbData;
 ui32 dwNumBytes = 768*484; /* For testing with Pulnix 9700 */
 ui32 *pSGTable;

 pbData = (ui8*) _ASL_Malloc(dwNumBytes); /* Calls malloc */

 /* Lock memory (and return scatter/gather table) note this function
 * allocates memory for the scatter/gather table and BASE_PhysMem_Unlock
 * frees it.
 */
 BASE_PhysMem_Lock(D16.m_hBase, (void*) pbData, dwNumBytes, &pSGTable);

 /* Point D16.m_hSrcImage to our (physically locked) data area */
 TMG_image_set_ptr(D16.m_hSrcImage, TMG_IMAGE_DATA, (void*) pbData);

 /* Now protect the memory so that library will not re-allocate it */
 TMG_image_set_flags(D16.m_hSrcImage, TMG_LOCKED, TRUE);

 /* Give the Snapper driver access to our physical device scatter-gather
 * table
 */
 BASE_set_ptr(D16.m_hBase, BASE_SG_TABLE, pSGTable);

 /* Finally capture an image */
 DIG16_capture_to_image(hSnapper, hSrcImage, DIG16_START_AND_WAIT);

 /* Process the image as required */
 …

 /* Tidy up - free physical memory etc */
 BASE_PhysMem_Unlock(D16.m_hBase, (void*) pbData, pSGTable);
 BASE_set_ptr(D16.m_hBase, BASE_SG_TABLE, NULL);
 _ASL_Free(pbData);
 TMG_image_set_ptr(D16.m_hSrcImage, TMG_IMAGE_DATA, (void*) NULL);

 return;
}

Memory may be allocated by the user application and locked by the Snapper driver as follows. The Snapper
driver returns a scatter/gather table of addresses and lengths. Note only one area of memory (per Snapper
handle) may be locked at any one time. The scatter/gather table format is described in “shared.h”.

int n;
ui8 *pbData;
ui32 dwNumBytes = 100000;
ui32 *pSGTable; /* User's DMA Scatter/gather table */

pbData = (ui8*) _ASL_Malloc(dwNumBytes); /* Our buffer */

BASE_PhysMem_Lock(D16.m_hBase, (void*) pbData, dwNumBytes, &pSGTable);

printf("Allocated size = %d bytes\n",
_SGTable_Get_AllocatedSizeBytes(pSGTable));

printf("Num Entries = %d\n", _SGTable_Get_NumEntries(pSGTable));
printf("Transfer size = %d bytes\n", _SGTable_Get_TransferSizeBytes(pSGTable)

);

for (n = 0; n < _SGTable_Get_NumEntries(pSGTable); n++)
{
 printf("PhysAddress[%d] = %d\n", n, _SGTable_Get_PhysAddress(pSGTable, n)

);
 printf("PhysLength[%d] = %d\n", n, _SGTable_Get_PhysLength(pSGTable, n));
}

Bus Interface Board Programmer’s Manual v4.0.1 BASE_PhysMem_Lock 17

BASE_PhysMem_Unlock(D16.m_hBase, (void*) pbData, pSGTable);
_ASL_Free(pbData);

BUGS / NOTES

It is only possible to generate a single Scatter-Gather table, even if the application requires more than 1
virtual memory image buffer. However, it is possible to generate a single table which contains sufficient
memory allocation for all the required buffers, and then only reference part of the buffer for each image.

This function is currently only available on Windows NT. However the nature of VxWorks means that this
function is not required – see the “VxWorks Programmer’s Manual” for a description of ALenLists.

SEE ALSO

BASE_PhysMem_Unlock.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_PhysMem_Unlock 18

BASE_PhysMem_Unlock

USAGE

Terr BASE_PhysMem_Unlock(Thandle Hbase, void *pData, ui32 **ppSGTable)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

pData Pointer to a virtual memory buffer allocated by the application.

ppSGTable The address of a pointer whose value contains the address of an existing Scatter-Gather
table.

DESCRIPTION

This function unlocks the virtual memory buffer pointed to by pData, but does not free the data space. It also
de-allocates the scatter-gather table and frees the memory space associated with it.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_SYSTEM_CALL_FAILED The call to the underlying operating system to unlock the virtual
memory buffer in physical memory, or to de-allocate the
Scatter-Gather table failed.

EXAMPLES

See BASE_PhysMem_Lock for an example.

BUGS / NOTES

This function is currently only available on Windows NT. However the nature of VxWorks means that this
function is not required – see the “VxWorks Programmer’s Manual” for a description of ALenLists.

SEE ALSO

BASE_PhysMem_Lock.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_get_parameter 19

BASE_serial_get_parameter

USAGE

ui32 BASE_serial_get_parameter(Thandle Hbase, ui32 parameter)

ARGUMENTS

Himage Handle to a Bus Interface Board.

parameter Parameter type.

DESCRIPTION

This function returns the current serial setting as selected by parameter. The parameter is always returned as
a 32 bit unsigned integer although some of the parameters are stored as 16 bit unsigned integers internally.

PARAMETER

The parameter takes the following values:

BASE_SERIAL_XON_XOFF_STATUS This option reads the XON/XOFF status. If TRUE, then data may
be transmitted and if FALSE then it cannot (i.e. an XOFF has been
received).

BASE_SERIAL_RX_COUNT This option reads the number of characters present in the receive
buffer. Any characters in the hardware receive buffer will be
flushed into the software buffer in the driver as part of making this
request. Calling BASE_serial_set_parameter with parameter
BASE_SERIAL_INIT may be used to clear down this count to zero
as part of resetting the serial port.

BASE_SERIAL_PARITY_ERRORS This option reads the number of parity errors that have occurred
since the serial port was initialised. The parity error count is
incremented whenever a parity error is received, irrespective of
whether BASE_SERIAL_PARITY_IGNORE is set to TRUE or
FALSE. It is initialised to zero by BASE_create or a call to
BASE_serial_set_parameter with BASE_SERIAL_INIT.

BASE_SERIAL_OVERFLOW_ERRORS This option reads the number of overflow errors that have occurred
since the serial port was initialised. It is initialised to zero by
BASE_create or a call to BASE_serial_set_parameter with
BASE_SERIAL_INIT.

BASE_SERIAL_BAUDRATE The current setting of the baud rate.

BASE_SERIAL_DATA_BITS The current setting of the number of data bits: 7 or 8.

BASE_SERIAL_STOP_BITS The current setting of the number of stop bits: 1 or 2.

BASE_SERIAL_XON_XOFF_ENABLE The current state of the XON/XOFF flow control; returns TRUE if
XON/XOFF flow control is enabled, FALSE otherwise.

BASE_SERIAL_XON_CHAR The current XON character.

BASE_SERIAL_XOFF_CHAR The current XOFF character.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_get_parameter 20

BASE_SERIAL_PARITY_MODE Allows the following parameters that apply to both transmit and
receive:
BASE_SERIAL_ODD
BASE_SERIAL_EVEN
BASE_SERIAL_MARK (always ‘1’)
BASE_SERIAL_SPACE (always ‘0’)
BASE_SERIAL_NONE (default).

BASE_SERIAL_PARITY_IGNORE The current setting of the parity control flag; returns TRUE if
parity is ignored, FALSE otherwise.

RETURNS

The parameter selected by parameter as an unsigned 32 bit integer (ui32).

EXAMPLES

The following code fragment sets then reads the baud rate setting:

BASE_serial_set_parameter(hBase, BASE_SERIAL_BAUDRATE, 19200);
BaudRate = BASE_serial_get_parameter(hBase, BASE_SERIAL_BAUDRATE);
printf(“Requested 19200, set %d\n”, BaudRate);

BUGS / NOTES

There are no known bugs.

SEE ALSO

BASE_serial_set_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_set_parameter 21

BASE_serial_set_parameter

USAGE

Terr BASE_serial_set_parameter(Thandle Hbase, ui32 parameter, ui32 value)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

parameter The parameter to set.

value The value of the parameter to set.

DESCRIPTION

This function sets the serial control parameters on the Bus Interface Board referenced by Hbase. Serial
communications are controlled by a microcontroller on the Bus Interface Board.

PARAMETER

The parameter takes the following values:

BASE_SERIAL_INIT This option resets the serial port and sets all the parameters to their
default option. value should be set to 0.

BASE_SERIAL_BAUDRATE The baud rate of the device. See options below (default 9600).

BASE_SERIAL_DATA_BITS The number of data bits: 7 or 8 (default 8).

BASE_SERIAL_STOP_BITS The number of stop bits: 1 or 2 (default 1).

BASE_SERIAL_XON_XOFF_ENABLE Enable or disable XON/XOFF flow control. Set to TRUE to
enable and FALSE to disable. The default is disabled.

BASE_SERIAL_XON_CHAR This allows the user to change the XON character from the default
of 17.

BASE_SERIAL_XOFF_CHAR This allows the user to change the XOFF character from the default
of 19.

BASE_SERIAL_PARITY_MODE Allows the following parameters that apply to both transmit and
receive:
BASE_SERIAL_ODD
BASE_SERIAL_EVEN
BASE_SERIAL_MARK (always ‘1’)
BASE_SERIAL_SPACE (always ‘0’)
BASE_SERIAL_NONE (default).

BASE_SERIAL_PARITY_IGNORE This is set to TRUE or FALSE (default) to control the behaviour of
BASE_serial_receive_buffer.

The frequency of the crystal fitted can be determined using the function BASE_get_property.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_BAD_PARAMETER The parameter value is invalid.

ASLERR_NOT_SUPPORTED The required baud rate is not available on the baseboard.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_set_parameter 22

EXAMPLES

This example checks the crystal frequency, then sets the baud rate to 125k:

BASE_get_property(hBase, “micro”, String); /* Read the crystal type */
pString = strrchr(String, “-”); /* e.g. String = “80C320-16.0” */
if ((pString[1] == ‘1’) && (pString[2] == ‘6’))
 BASE_serial_set_parameter(hBase, BASE_SERIAL_BAUDRATE, 125000);
else
 printf(“125K baud not available - micro: %s”, String);

BUGS / NOTES

The supported baud rates depend on the frequency of the crystal fitted to the board. The standard crystal
fitted is 18.432 MHz which provides the following baud rates: 9600, 14400, 19200, 28800 and 57600. Two
special build options are available; 22.1184 MHz crystal may be fitted to provide 9600, 14400, 19200,
28800, 38400, 57600, 115200 or 16 MHz crystal may be fitted to provide 9600, 19200 and 125000 (although
the actual frequencies are 19231 and 9615 for 19200 and 9600 respectively).

Serial communications are not available on ISA Bus Interface Boards.

SEE ALSO

BASE_get_parameter, BASE_serial_transmit_buffer.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_receive_buffer 23

BASE_serial_receive_buffer

USAGE

Terr BASE_serial_receive_buffer(Thandle Hbase, ui8 *pBuffer, ui32 *pRxCount, ui32 Timeout)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

pBuffer Pointer to a receive character buffer.

pRxCount Pointer to the number of characters to be read and placed into the receive buffer.

Timeout Timeout in milliseconds.

DESCRIPTION

This function receives a stream of characters and places them into the buffer pointed to by pBuffer. The
number of characters requested is determined by the contents of a 32 bit unsigned integer pointed to by
pRxCount. pRxCount will be updated with the number of characters successfully received. If less than the
requested number of characters are successfully received, then the warning code ASLWRN_TIMEOUT will be
returned.

If Timeout is set to 0, then the function will wait indefinitely until all characters have been received, unless an
error occurs, in which case the function will return with the appropriate error code.

If Timeout is set to 1, then the function will return immediately with the number of characters already present
in the driver/hardware serial receive buffer. (Any characters required to be read from the hardware buffer
will be read out as necessary in order to return the requested number of characters.) If no characters are
present the function will return immediately with a receive count of zero.

If a timeout occurs, the function will return with a timeout warning.

If the XON/XOFF protocol is being used, these characters are interpreted in the driver/hardware and are not
counted as received characters.

If a parity error occurs and BASE_SERIAL_PARITY_IGNORE is set to FALSE (see
BASE_serial_set_parameter), the function returns ASLERR_PARITY and the number of characters
successfully read up to and including the character with the parity error. The parity error count is
incremented irrespective of the state of BASE_SERIAL_PARITY_IGNORE and can be read using
BASE_serial_get_parameter. A further call to BASE_serial_receive_buffer is necessary to read the
additional characters that were originally required, after the character that generated the parity error.

If an overflow error occurs, the function returns with the error ASLERR_OVERFLOW. If errors occur
simultaneously, overflow errors take precedent over parity which takes precedent over underflow.

RETURNS

This function returns the following codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLWRN_TIMEOUT The timeout expired before the required number of characters were
received. This is NOT an error, and will not generate a call to the
default error handler. This is necessary as some serial protocols
require receive calls to timeout to determine the status of the serial
link.

EXAMPLES

This example receives a single character:

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_receive_buffer 24

char pBuffer[256];
ui32 Count;
ui32 *pCount;

pCount = &Count; /* set up pointer */
Count = 1; /* 1 characters to receive */
res = BASE_serial_receive_buffer(hBase, pBuffer, pCount, 0);
if (res == ASL_OK)
 printf(“Successfully received: %c”, pBuffer[0]);

BUGS / NOTES

Under MS-DOS and Windows 3.1, the only acceptable values of Timeout are 0 and 1.

Only one thread may be in the receive buffer call at any one time. Subsequent calls will generate a busy error
and return.

The timeout value must be carefully chosen, allowing for the current baud rate and possible added delays due
to flow control events.

Note that if binary data is being transmitted or received then XON/XOFF flow control must not be used (i.e.
because valid binary data may contain XON/XOFF characters).

SEE ALSO

BASE_serial_transmit_buffer, BASE_serial_set_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_transmit_buffer 25

BASE_serial_transmit_buffer

USAGE

Terr BASE_serial_transmit_buffer(Thandle Hbase, ui8 *pBuffer, ui32 *pTxCount, ui32 Timeout)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

pBuffer Pointer to a character buffer.

pTxCount Pointer to the number of characters in the buffer to transmit.

Timeout Timeout in milliseconds.

DESCRIPTION

This function transmits a stream of characters from the buffer pointed to by pBuffer. The number of
characters is determined by the contents of a 32 bit unsigned integer pointed to by pTxCount. The function
will not return until the whole buffer has been sent or a timeout occurs. pTxCount will be updated with the
number of characters successfully sent.

If Timeout is set to 0, then the function will wait indefinitely until all characters have been transmitted. The
event that may cause a transmit delay in this instance would be the reception of an XOFF character whilst
transmitting.

If Timeout is set to 1, then the function will return immediately if it cannot transmit (with the error code
ASLERR_TIMEOUT) or with the number of characters successfully transmitted before XOFF was received.

Any characters received whilst transmitting the contents of the buffer will be buffered up in the driver (and/or
hardware receive buffer) ready to be read by BASE_serial_receive_buffer.

If a timeout occurs, the transmission is aborted, and an error status is returned.

RETURNS

This function returns the following codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_SYSTEM_CALL_FAILED The timeout expired before the required number of characters were
transmitted.

EXAMPLES

This example sets up and transmits a buffer containing an imaginary camera command:

char pCameraOnCommand[] = “CamOn”;
ui32 Count;
ui32 *pCount;

pCount = &Count; /* set up pointer */
Count = 5; /* 5 characters to transmit */
res = BASE_serial_transmit_buffer(hBase, pCameraOnCommand, pCount, 0);
if (res == ASL_OK)
 printf(“Successfully sent string %s”, pCameraOnCommand);

BUGS / NOTES

Under MS-DOS and Windows 3.1, the only acceptable values of Timeout are 0 and 1.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_serial_transmit_buffer 26

Only one thread may be in the transmit buffer call at any one time. Subsequent calls will generate a busy error
and return.

The timeout value must be carefully chosen, allowing for the current baud rate and possible added delays due
to flow control events.

Note that if binary data is being transmitted or received then XON/XOFF flow control must not be used (i.e.
because valid binary data may contain XON/XOFF characters).

SEE ALSO

BASE_serial_receive_buffer, BASE_serial_set_parameter.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_set_ptr 27

BASE_set_ptr

USAGE

Terr BASE_set_ptr(Thandle Hbase, ui32 dwType, void *pData)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

dwType Memory buffer type

pData Pointer to the memory buffer

DESCRIPTION

This function sets pointers within the Base structure to the value of pData.

The parameters are as follows:

BASE_SG_TABLE This sets the structure member within the Base structure which points
to the scatter-gather table, to the value of pData.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The baseboard handle is invalid.

ASLERR_BAD_PARAM The parameter value is invalid.

EXAMPLES

See BASE_PhysMem_Lock for an example.

BUGS / NOTES

There are no known bugs.

SEE ALSO

BASE_PhysMem_Lock, BASE_PhysMem_Unlock.

Bus Interface Board Programmer’s Manual v4.0.1 BASE_set_timer 28

BASE_set_timer

USAGE

Terr BASE_set_timer(Thandle Hbase, Tparam mode, ui32 time_us)

ARGUMENTS

Hbase Handle to a Bus Interface Board.

mode The required timer mode.

time_us The required time interval in microseconds.

DESCRIPTION

This function controls the hardware timer fitted to the Bus Interface Board.

MODE

BASE_TIMER_MONOSTABLE A single timed pulse is generated of width specified by time_us.

BASE_TIMER_ASTABLE A continuous square wave is generated, whose period is twice that
of time_us.

BASE_TIMER_START_AND_WAIT The function starts the hardware timer running, but does not return
until the end of the pulse. This mode is only valid in conjunction
with BASE_TIMER_MONOSTABLE.

BASE_TIMER_START_AND_RETURN The function starts the hardware timer running and then returns
immediately.

RETURNS

ASL_OK If successful.

ASLERR_BAD_HANDLE The Bus Interface Board’s handle is invalid.

ASLERR_BAD_PARAM The mode parameter is invalid.

ASLERR_PARAMETER_CONFLICT Two of the parameters conflict with each other.

ASLERR_NOT_SUPPORTED The Bus Interface Board does not have a hardware timer, or a
firmware upgrade is needed.

EXAMPLES

To use the hardware timer in conjunction with a Snapper-24 to enable an active high pulse of 1ms, followed
by a low pulse of 1s, followed by a high pulse of 1ms:

/* Generate first pulse.
 * By using SNP24_TRIG_OUT_TIMER_HI, the output pulse is purely controlled
 * by the hardware and will therefore have minimal jitter.
 */
SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_TIMER_HI);
BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);

/* Hold exposure line low for 1 second
 * By using SNP24_TRIG_OUT_LO, although the timer pulse is generated
 * in hardware, there may be software delays before the output is cleared
 * which may give a small jitter on the delay time.
 */
SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_LO);
BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000000L);

Bus Interface Board Programmer’s Manual v4.0.1 BASE_set_timer 29

/* Finally generate second pulse */
SNP24_set_trigger(Hsnp24, SNP24_TRIG_OUT_TIMER_HI);
BASE_set_timer(Hbase, BASE_TIMER_MONOSTABLE | BASE_TIMER_START_AND_WAIT,

(ui32) 1000);

BUGS / NOTES

The range of time delays supported by the hardware timer is large - typically from around 30 µs to 24 hours,
with a resolution of microseconds for short delays, although the use of a 32 bit integer for time_us limits the
maximum monostable delay to around 1 hour 11 minutes. If the time requested is smaller than that which is
supported then the minimum supported delay is generated.

The ISA-BIB and ISA-JPG do not support hardware timers, and early versions of PCI-BIB and SBUS-BIB
need a firmware upgrade for all timer functions to work.

There are no known bugs.

SEE ALSO

-

	Introduction
	Function Overview
	Error Returns
	Sample Application
	Function List
	BASIC FUNCTIONS
	SERIAL COMMUNICATIONS FUNCTIONS
	MEMORY HANDLING FUNCTIONS
	MISCELLANEOUS FUNCTIONS

	BASE_create
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_delay
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_destroy
	USAGE
	ARGUMENTS

	BASE_get_parameter
	USAGE
	ARGUMENTS

	BASE_get_property
	USAGE
	ARGUMENTS
	PROPERTY

	BASE_PhysMem_Lock
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_PhysMem_Unlock
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	BASE_serial_get_parameter
	USAGE
	ARGUMENTS
	PARAMETER

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_serial_set_parameter
	USAGE
	ARGUMENTS
	PARAMETER

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_serial_receive_buffer
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_serial_transmit_buffer
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	BASE_set_ptr
	USAGE
	ARGUMENTS
	BUGS / NOTES
	SEE ALSO

	BASE_set_timer
	USAGE
	ARGUMENTS
	DESCRIPTION
	MODE

	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

