
v4.0.1

CRUNCH Library

Programmer’s Manual

DataCell Limited

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

Disclaimer

While every precaution has been taken in the preparation of this manual, DataCell Ltd assumes no responsibility for
errors or omissions. DataCell Ltd reserves the right to change the specification of the product described within this
manual and the manual itself at any time without notice and without obligation of DataCell Ltd to notify any person
of such revisions or changes.

Copyright Notice

Copyright  1994-1999 DataCell Ltd and Active Silicon Ltd. All rights reserved. This document may not in whole
or in part, be reproduced, transmitted, transcribed, stored in any electronic medium or machine readable form, or
translated into any language or computer language without the prior written consent of DataCell Ltd.

Trademarks

“Apple”, “Macintosh” and “MacOS” are trademarks of Apple Computer Inc. “AMCC” is a registered trademark of
Applied Micro Circuits Corporation. “Dallas” is a registered trademark of Dallas Semiconductor Corporation.
“Dell” is a registered trademark of Dell Computer Corporation. “Flash Graphics” and “X-32VM” are trademarks of
Flashtek Limited. “IBM”, “PC/AT”, “PowerPC” and “VGA” are registered trademarks of International Business
Machine Corporation. “MetroWerks” and “CodeWarrior” are registered trademarks of MetroWerks Inc.
“Microsoft”, “CodeView”, “MS” and “MS-DOS”, “Windows”, “Windows NT”, “Windows 95”, “Windows 98”,
“Win32”, “Visual C++” are trademarks or registered trademarks of Microsoft Corporation. “National
Semiconductor” is a registered trademark of National Semiconductor Corporation. “Sun”, “Ultra AX” and “Solaris”
are registered trademarks of Sun Microsystems Inc. All “SPARC” trademarks are trademarks or registered
trademarks of SPARC International Inc. “VxWorks” and “Tornado” are registered trademarks of Wind River
Systems Inc. “Xilinx” is a registered trademark of Xilinx.
All other trademarks and registered trademarks are the property of their respective owners.

Part Information

Part Number: SNP-MAN-JPG-LIB

Version v4.0.1 September 1999

Printed in the United Kingdom.

Contact Details

Europe & ROW

USA

Web
Sales
Support

Web
Sales
Support

www.datacell.co.uk
info@datacell.co.uk
techsupport@datacell.co.uk

www.datacell.com
info@datacell.com
techsupport@datacell.com

Head Office:
DataCell Limited.
Falcon Business Park, 40 Ivanhoe Road,
Finchampstead, Berkshire, RG40 4QQ, UK

Tel +44 (0) 1189 324324
Fax +44 (0) 1189 324325

http://www.datacell.co.uk/
http://www.datacell.co.uk/
mailto:info@datacell.co.uk
mailto:techsupport@datacell.co.uk
http://www.datacell.com/
http://www.datacell.co.uk/
mailto:info@datacell.com
mailto:techsupport@datacell.com

By setting this text to white before printing, Word will retain the page ordering. on the HP8100 duplex printer.

CRUNCH Programmer’s Manual v4.0.1 i

Table of Contents

Introduction... 1

Function Overview.. 2

Error Returns... 3

Sample Applications ... 4

Function List ... 8

CRUNCH_compress_from_snapper ... 9

CRUNCH_compress ... 10

CRUNCH_compress_image_to_image... 11

CRUNCH_decompress ... 13

CRUNCH_decompress_image_to_image ... 14

CRUNCH_sequence_record ... 16

CRUNCH_sequence_replay.. 18

CRUNCH_set_Quality_factor... 20

CRUNCH_set_Quantization_factor .. 21

CRUNCH Programmer’s Manual v4.0.1 ii

CRUNCH Programmer’s Manual v4.0.1 Introduction 1

Introduction

This document describes the “CRUNCH” library of functions. These functions allow the compression and
decompression of images using a “Crunch” JPEG compression card. The functions are able to process images from
files, memory, and also directly from a Snapper module plugged onto a Crunch board. (e.g. Snapper-16 -a
composite/S-Video image acquisition module.)

CRUNCH Programmer’s Manual v4.0.1 Function Overview 2

Function Overview

INITIALIZATION

The Crunch compression hardware resides on the Bus Interface Board and is initialized by the Bus Interface Library
function call BASE_create. Please refer to the Bus Interface Board Library for more details.

Prior to compressing an image, the desired quality factor can be set using CRUNCH_set_Quality_factor or
CRUNCH_set_Quantization_factor (only one of these functions needs to be used). If neither of these functions is
used, the default quality factor of 32 will be used. Refer to the manual pages on these functions for a description of
what this actually means.

COMPRESSION / DECOMPRESSION FUNCTIONS

The compression and decompression functions operate on TMG image handles and require the TMG imaging
processing library. The image handle references an image structure that contains image data, along with additional
information such as image width, height, depth, colourmap etc. The functions allow images to be processed as a
whole, or in a series of strips. Strip processing is required where memory is at a premium (e.g. 16 bit real mode
MS-DOS), or where very large images are being processed. For a detailed description of strip processing, and the
creation of images, see the “TMG Library Programmer’s Manual”.

The functions can operate on image data located either in memory, in a file or from a Snapper acquisition module.

In order to allow the greatest flexibility, two levels of user compression/decompression routines are provided. At the
highest level, CRUNCH_compress_image_to_image, CRUNCH_decompress_image_to_image and
CRUNCH_compress_from_snapper perform complete operations. These functions allow an image to be compressed
or decompressed with just a single function call.

CRUNCH_compress_image_to_image reads raw data from the source image, and writes compressed JPEG data to
the destination image. Internally, this function operates in strips, the strip height (i.e. number of lines) being
determined by the lines_this_strip parameter of the source image. The source and destination images can be to/from
memory or disk.

Similarly, CRUNCH_decompress_image_to_image reads compressed data from a source image and writes raw data
to a destination image.

CRUNCH_compress_from_snapper reads raw data directly from a Snapper module, and writes compressed JPEG
data to a destination JPEG image (in memory or to directly to disk).

At a lower level to the above functions, CRUNCH_compress and CRUNCH_decompress allow the processing of a
single strip. Again, the strip height is determined by the lines_this_strip parameter of the input image. For more
information and examples of strip processing, refer to the TMG Library Programmer’s Manual and the example
source code provided as part of the Snapper SDK.

CRUNCH_sequence_record records a motion JPEG sequence to memory or to file.

CRUNCH_sequence_replay replays a motion JPEG sequence from memory or file.

CRUNCH Programmer’s Manual v4.0.1 Error Returns 3

Error Returns

All of the CRUNCH library functions return a type called Terr. This is a 32 bit unsigned integer, with the bit
positions defined as follows:

31 to 24 Hardware ident and revision of the Bus Interface Board that the handle refers to. If there is no error this
field is zero. The upper 5 bits of this byte refer to the ident and the lower 3 bits the revision level of the
board.

23 to 16 This contains an error number, otherwise 0 if no error.

15 to 0 Function return value.

If a function call is successful, it returns ASL_OK (which is defined as 0) or the requested parameter. If an error
occurs, an error number is returned in bits 23 to 16 along with the library identifier in bits 31 to 24. See the
“Snapper Error Handling Programmer’s Manual” in the Developer’s Guide section of the Snapper Developer’s
Manual for more details on error returns.

CRUNCH Programmer’s Manual v4.0.1 Sample Applications 4

Sample Applications

The following four programs show how to compress/decompress an image to/from a JPEG file. The first
compression example assumes a 32 bit DOS extender (the Symantec DOSX model is supported) and the second
compression example shows how to use real mode MS-DOS (for example Microsoft C with no DOS extender).
Then there are two decompression examples - again one using assuming an MS- DOS extender and one assuming
real mode MS-DOS. Note that the examples illustrating how to use real mode MS-DOS work equally well with a
MS-DOS extender (but uses significantly less dynamic memory). As with all sample code in this manual, error
handling has been omitted for clarity, but apart from not handling errors cleanly these are usable programs. More
detailed examples can be found on the Snapper SDK disks.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hbase; /* Handle to Crunch hardware */
 Thandle Hin_image, Hjpeg_image; /* Input and output images */

 /* Initialize Crunch baseboard */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hin_image = TMG_image_create();
 Hjpeg_image = TMG_JPEG_image_create();

 TMG_image_set_infilename(Hin_image, “input.tif”);
 TMG_image_set_outfilename(Hjpeg_image, “output.jpg”);

 TMG_image_set_parameter(Hin_image, TMG_HEIGHT, TMG_AUTO_HEIGHT);
 TMG_image_read(Hin_image, TMG_NULL, TMG_RUN);

 /* Compress the image in memory to a JPEG image also in memory */
 CRUNCH_compress(Hbase, Hin_image, Hjpeg_image, TMG_RUN);
 TMG_JPEG_write_file(Hjpeg_image, TMG_RUN);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

CRUNCH Programmer’s Manual v4.0.1 Sample Applications 5

The following example performs exactly the same function as the previous one, but processes the image in strips,
thus dramatically reducing the amount of dynamic memory required. Note that this code will work in either real
mode MS-DOS or extended mode MS-DOS.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hbase; /* Handle to Crunch hardware */
 Thandle Hin_image, Hjpeg_image; /* Input and output images */

 /* Initialize Crunch baseboard */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hin_image = TMG_image_create();
 Hjpeg_image = TMG_JPEG_image_create();

 TMG_image_set_infilename(Hin_image, “input.tif”);
 TMG_image_set_outfilename(Hjpeg_image, “output.jpg”);

 /* Read the image's dimensions */
 TMG_image_set_parameter(Hin_image, TMG_LINES_THIS_STRIP, 0);
 if (TMG_image_read(Hin_image, TMG_NULL, TMG_RUN) != ASL_OK) {
 printf("\nFailed to open file\n");
 exit(0);
 }
 TMG_image_read(Hin_image, TMG_NULL, TMG_RESET);

 /* We’ll process 8 lines at a time */
 TMG_image_set_parameter(Hin_image, TMG_LINES_THIS_STRIP, 8);

 /* Compress the image from file to file */
 CRUNCH_compress_image_to_image(Hbase, Hin_image, Hjpeg_image, TMG_FILE,

TMG_FILE);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

CRUNCH Programmer’s Manual v4.0.1 Sample Applications 6

The next example shows how to decompress an image in memory and requires an MS-DOS extender (Symantec
DOSX).

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hbase; /* Handle to Crunch hardware */
 Thandle Hjpeg_image, Hout_image; /* Input and output images */

 /* Initialize Crunch baseboard */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hout_image = TMG_image_create();
 Hjpeg_image = TMG_JPEG_image_create();

 TMG_image_set_infilename(Hjpeg_image, “input.jpg”);
 TMG_image_set_outfilename(Hout_image, “output.tif”);

 if (TMG_JPEG_read_file(Hjpeg_image) != ASL_OK) {
 printf(“DECOMP: Failed to open JPEG file\n”);
 exit(0);
 }

 /* Process the whole image in one strip */
 TMG_image_set_parameter(Hjpeg_image, TMG_LINES_THIS_STRIP,
 TMG_image_get_parameter(Hjpeg_image, TMG_HEIGHT));

 /* Decompress the JPEG image in memory to raw data in memory */
 CRUNCH_decompress(Hcrunch, Hjpeg_image, Hout_image, TMG_RUN);

 /* Now save the image as a TIFF file */
 TMG_image_write(Hout_image, TMG_NULL, TMG_TIFF, TMG_RUN);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

CRUNCH Programmer’s Manual v4.0.1 Sample Applications 7

This final example shows how to decompress a JPEG image from file to file. This code will work in either real
mode MS-DOS or extended mode MS-DOS and uses significantly less dynamic memory than the previous example.

#include <asl_inc.h>

int main(ui16 argc, char** argv)
{
 Thandle Hbase; /* Handle to Crunch hardware */
 Thandle Hjpeg_image, Hout_image; /* Input and output images */

 /* Initialize Crunch baseboard */
 Hbase = ASL_get_ret(BASE_create(BASE_AUTO));
 Hout_image = TMG_image_create();
 Hjpeg_image = TMG_JPEG_image_create();

 TMG_image_set_infilename(Hjpeg_image, “input.jpg”);
 TMG_image_set_outfilename(Hout_image, “output.tif”);

 /* Process 8 lines at a time to reduce memory requirements */
 TMG_image_set_parameter(Hjpeg_image, TMG_LINES_THIS_STRIP, 8);

 /* Decompress from the JPEG file to a TIFF file */
 CRUNCH_decompress_image_to_image(Hbase, Hjpeg_image, Hout_image, TMG_FILE,

TMG_TIFF);

 /* Free memory and exit */
 BASE_destroy(BASE_ALL_HANDLES);
 TMG_image_destroy(TMG_ALL_HANDLES);
}

Note that JPEG software is provided in the TMG library and that the above Crunch functions may be replaced by
“TMG_JPEG” ones. See the TMG Programmer’s Manual for more details.

CRUNCH Programmer’s Manual v4.0.1 Function List 8

Function List

CRUNCH_compress

CRUNCH_compress_from_snapper

CRUNCH_compress_image_to_image

CRUNCH_decompress

CRUNCH_decompress_image_to_image

CRUNCH_sequence_record

CRUNCH_sequence_replay

CRUNCH_set_Quality_factor

CRUNCH_set_Quantization_factor

The functions are described in alphabetical order in the following pages.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_compress_from_snapper 9

CRUNCH_compress_from_snapper

USAGE

Terr CRUNCH_compress_from_snapper(Thandle Hbase, Thandle Hjpeg_image, ui16 format)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Hjpeg_image Handle to JPEG compressed image.

format Either TMG_MEMORY or TMG_FILE.

DESCRIPTION

This function compresses the image already captured in a Snapper-16 or Snapper-24 module using the JPEG
hardware referenced by Hbase. Raw image data is read from the Snapper module, compressed and written to
Hjpeg_image. If the output format, format, is set to TMG_MEMORY, the compressed data is written to
memory. If format is set to TMG_FILE it is written directly to a JPEG file with the name specified by a call
to TMG_image_set_outfilename with Hjpeg_image as the image handle.

If the sub-sampling mode of the Snapper is set to SUB_X1_FIELD_DUPLICATE, only single fields will be
compressed. Also the image height will be halved and the flag, TMG_HALF_ASPECT, will be set.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.

EXAMPLES

The following code will capture an image from Snapper-16 and then save the image as a JPEG file.

.
SNP16_capture(Hsnapper);
TMG_image_set_outfilename(Hjpeg_image, “image.jpg”);
CRUNCH_compress_from_snapper(Hbase, Hjpeg_image, TMG_FILE);
.

BUGS / NOTES

The image to be compressed must have a width which is exactly divisible by 16 for colour images and 8 for
grayscale images, and a height that is exactly divisible by 8. Also the minimum image size is 128 x 8.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

This function has the side effect of setting the image parameter TMG_LINES_THIS_STRIP to the height of
the image.

SEE ALSO

CRUNCH_compress, CRUNCH_sequence_record.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_compress 10

CRUNCH_compress

USAGE

Terr CRUNCH_compress(Thandle Hbase, Thandle Himage, Thandle Hjpeg_image, ui16 TMG_action)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Himage Handle to a raw (uncompressed) image.

Hjpeg_image Handle to a JPEG compressed image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function compresses a single image strip using the JPEG hardware referenced by Hbase. If the function
is called with TMG_action set to TMG_RUN, raw image data is read from Himage, and compressed JPEG
data written to Hjpeg_image. The strip size is determined by the lines_this_strip parameter of Himage. If the
function is called with TMG_action set to TMG_RESET the compression process is aborted and local static
(internal) variables are reset. TMG_RESET is rarely needed.

This function is called by CRUNCH_compress_image_to_image.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED This can be for one of the following reasons:
The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.
The image height and width are not multiples of 8 pixels
The image format is not TMG_Y8, TMG_YUV422 or TMG_RGB24.

EXAMPLES

See the Sample Applications section at the beginning of this manual.

BUGS / NOTES

The image to be compressed must have a width which is exactly divisible by 16 for colour images and 8 for
grayscale images, and a height that is exactly divisible by 8. The width needs to be at least 128 pixels for
colour images and 64 pixels for mono images; and at least 8 lines high.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

SEE ALSO

CRUNCH_compress_from_snapper, CRUNCH_set_Quality_factor, CRUNCH_set_Quantization_factor.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_compress_image_to_image 11

CRUNCH_compress_image_to_image

USAGE

Terr CRUNCH_compress_image_to_image(Thandle Hbase, Thandle Himage, Thandle Hjpeg_image, ui16
in_format, ui16 out_format)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Himage Handle to raw image.

Hjpeg_image Handle to compressed image.

in_format TMG_MEMORY or TMG_FILE.

out_format TMG_MEMORY or TMG_FILE.

DESCRIPTION

This is a convenient wrapper function for CRUNCH_compress that compresses a complete image using the
JPEG hardware referenced by Hbase. Raw image data is read from Himage, compressed and written to
Hjpeg_image. If the input format, in_format, is set to TMG_MEMORY, raw image data is read from memory
(from Himage). If in_format is set to TMG_FILE, it is read from the file associated with Himage (i.e. set
using TMG_image_set_infilename). Similarly, If the output format, out_format, is set to TMG_MEMORY,
compressed data is written to memory (in Hjpeg_image). If out_format is set to TMG_FILE it is written
directly to the JPEG file referenced by Hjpeg_image (i.e. set using TMG_image_set_outfilename).. If the
lines_this_strip parameter of Himage is less than the total image height, then compression is performed in
strips. The lines_this_strip parameter is set using TMG_image_set_parameter.

For DOS real mode applications, lines_this_strip should typically be set to 8. This is due to the memory
limitations of real mode DOS. This has very little affect on the compression speed. See the TMG Library
Programmer's Manual for more details on strip processing.

This function is a convenient way of compressing from file to file with just one call.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.

EXAMPLES

See the Sample Applications section at the beginning of this manual.

BUGS / NOTES

The strip size must be a multiple of 8.

The image to be compressed must have a width which is exactly divisible by 16 for colour images and 8 for
grayscale images, and a height that is exactly divisible by 8. The width needs to be at least 128 pixels for
colour images and 64 pixels for mono images; and at least 8 lines high.

The JPEG images are generated using the “default” Huffman tables as suggested in the JPEG specification.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_compress_image_to_image 12

SEE ALSO

CRUNCH_compress, CRUNCH_compress_from_snapper, CRUNCH_set_Quality_factor,
CRUNCH_set_Quantization_factor.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_decompress 13

CRUNCH_decompress

USAGE

Terr CRUNCH_decompress(Thandle Hbase, Thandle Hjpeg_image, Thandle Himage, ui16 TMG_action)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Hjpeg_image Handle to compressed JPEG image.

Himage Handle to raw (uncompressed) image.

TMG_action Either TMG_RUN for normal operation or TMG_RESET to abort.

DESCRIPTION

This function decompresses a single image strip using the JPEG hardware referenced by Hbase. If the
function is called with TMG_action set to TMG_RUN, compressed image data is read from Hjpeg_image, and
raw data written to Himage. The strip size is determined by the lines_this_strip parameter of Hjpeg_image.
If the function is called with TMG_action set to TMG_RESET, the decompression is aborted and internal
static variables are reset.

This function is called by CRUNCH_decompress_image_to_image.

For colour images, the JPEG image may be decompressed to YUV data or RGB data depending on the pixel
format set in Himage (see TMG_image_set_parameter with TMG_PIXEL_FORMAT). By default the
decompressed image will have the pixel format TMG_RGB24, but if the pixel format is set to TMG_YUV422
prior to calling this function, the pixel format of the decompressed image will be TMG_YUV422.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED This can be for one of the following reasons:
The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.
The image height and width are not multiples of 8 pixels

EXAMPLES

See the Sample Applications section at the beginning of this manual.

BUGS / NOTES

The strip size must be a multiple of 8.

Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

SEE ALSO

CRUNCH_decompress_image_to_image.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_decompress_image_to_image 14

CRUNCH_decompress_image_to_image

USAGE

Terr CRUNCH_decompress_image_to_image(Thandle Hbase, Thandle Hjpeg_image, Thandle Himage,
ui16 in_format, ui16 out_format)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Hjpeg_image Handle to compressed image.

Himage Handle to raw image.

in_format TMG_MEMORY or TMG_FILE.

out_format TMG_MEMORY or a file type: TMG_TIFF, TMG_TGA, TMG_EPS, TMG_BMP etc.

DESCRIPTION

This function decompresses a complete image using the JPEG hardware referenced by Hbase. Compressed
image data is read from Hjpeg_image, and raw image data written to Himage. If the parameter, in_format, is
set to TMG_MEMORY, compressed image data is read directly from memory (referenced by Hjpeg_image).
If in_format is set to TMG_FILE, the JPEG data is read from the JPEG/JFIF file associated with
Hjpeg_image. Similarly, if the parameter, out_format, is set to TMG_MEMORY, raw image data is written to
memory (in Himage). If out_format is set to a file type, for example TMG_TIFF, it is written directly to the
file referenced by Himage in that format. If the lines_this_strip parameter of Hjpeg_image is less than the
total image height, the decompression is performed in strips.

When decompressing colour images to memory, the output pixel format may be YUV or RGB depending on
the pixel format set in Himage (see TMG_image_set_parameter with TMG_PIXEL_FORMAT). By default
the decompressed image will have the pixel format TMG_RGB24, but if the pixel format is set to
TMG_YUV422 prior to calling this function, the pixel format of the decompressed image will be
TMG_YUV422.

For real mode DOS applications, lines_this_strip should typically be set to 8. This is due to the memory
limitations of real mode DOS. This has very little affect on the decompression speed. See the TMG Library
Programmer’s Manual for more details on strip processing.

This function is a convenient way of decompressing from file to file with just one call.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.

EXAMPLES

See the Sample Applications section at the beginning of this manual.

BUGS / NOTES

The strip size must be a multiple of 8.

Only JPEG images with the “default” Huffman tables as suggested in the JPEG specification are supported.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_decompress_image_to_image 15

SEE ALSO

CRUNCH_decompress, CRUNCH_compress_image_to_image.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_sequence_record 16

CRUNCH_sequence_record

USAGE

Terr CRUNCH_sequence_record(Thandle Hbase, Thandle Hjpeg_image, ui32 length, ui16 format, ui16
TMG_action)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Hjpeg_image Handle to compressed image sequence.

length Length of sequence in frames.

format Either TMG_MEMORY or TMG_FILE.

TMG_action TMG_START, TMG_RUN or TMG_RESET.

DESCRIPTION

This function record a sequence of frames from Snapper-24 or Snapper-16 and saves them as a compressed
motion JPEG sequence referenced by Hjpeg_image. The JPEG data may be streamed either to disk or to
memory using the format parameter. This function does not reset the JPEG decompression hardware between
frames and is therefore faster than repeatedly using CRUNCH_compress on a sequence of images. Memory
must first be allocated as shown in the example below.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.

EXAMPLES

The following code records a motion JPEG sequence to memory:

/* malloc a megabyte for a sequence - in Hjpeg_image */
Pmem = (IM_UI8*) MALLOC((long) 100000);
if (Pmem == NULL) {
 printf(“No memory available!”);
 exit(0);
}

TMG_image_set_ptr(Hjpeg_image, TMG_JPEG_DATA, (void*) Pui8_1);
/* stop the library from freeing memory it hasn’t allocated */
TMG_image_set_flags(Hjpeg_image, TMG_LOCKED, TRUE);
.
/* record 32 frames to memory */
CRUNCH_sequence_record(Hcrunch, Hjpeg_image, 32, TMG_MEMORY, TMG_RUN);
.
/* note the application must free the memory */
FREE(Pmem);
TMG_image_set_ptr(Hjpeg_image, TMG_JPEG_DATA, (void*) NULL);
TMG_image_set_flags(Hjpeg_image, TMG_LOCKED, FALSE);
BASE_destroy(BASE_ALL_HANDLES);
TMG_image_destroy(TMG_ALL_HANDLES);

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_sequence_record 17

This next example records a motion JPEG sequence directly to disk.

/*
 * We don’t need to allocate any memory - a single frame
 * of workspace memory will be malloc’ed internally.
 */

/* record 32 frames to disk */
TMG_image_set_outfilename(Hjpeg_image, “seq.jpg”);
CRUNCH_sequence_record(Hcrunch, Hjpeg_image, 32, TMG_FILE, TMG_RUN);

For a detailed example please refer to the file “seq.c” on the Snapper SDK disks.

BUGS / NOTES

This function is supported under all operating systems/environments apart from real mode DOS because of
the memory limitations. Also this function always compresses complete images and does not compress the
image in strips.

The JPEG data format is exactly the same as “normal” JPEG/JFIF files except the data consists of multiple
frames with restart markers (FF D8 hex) between each frame.

SEE ALSO

TMG_sequence_set_start_frame, CRUNCH_sequence_replay.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_sequence_replay 18

CRUNCH_sequence_replay

USAGE

Terr CRUNCH_sequence_replay(Thandle Hbase, Thandle Hjpeg_image, Thandle Hout_image, ui16
subsample, ui16 TMG_action)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Hjpeg_image Handle to compressed image sequence.

Hout_image Handle to raw image.

subsample Replay sub-sampling ratio.

TMG_action TMG_START, TMG_RUN or TMG_RESET.

DESCRIPTION

This function decompresses a single image from the JPEG sequence referenced by Hjpeg_image to
Hout_image, each time the function is called. This function does not reset the JPEG decompression chip
between frames and is therefore faster than repeatedly using CRUNCH_decompress on a sequence of images.
It also decompresses directly to the TMG_RGB16 format, suitable for direct display to the host’s graphics
card.

The function is first called with TMG_action set to TMG_START - this initialises the hardware and pre-fills
the decompression pipeline. Subsequent calls that decompress a single image are made with this parameter
set to TMG_RUN. Having finished replaying the sequence, the JPEG hardware should be reset by calling the
same function with TMG_action set to TMG_RESET.

The parameter, subsample, can be used to sub-sample the image on replay thus saving a memory to memory
copy (i.e. the case if TMG_image_subsample was used).

The sequence can be single stepped or played from any location by using the function
TMG_JPEG_sequence_set_start_frame.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

ASLERR_NOT_SUPPORTED The baseboard does not contain any compression hardware, ie it is NOT an
ISA-JPG.

EXAMPLES

The following code replays a motion JPEG sequence from memory to a RGB16 format display:

TMG_JPEG_sequence_set_start_frame(Hjpeg_image, 1);
CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_START);

for (n = 0; n < 32; n++)
{
 CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_RUN);
 TMG_display_image(Hdisplay, Himage1, TMG_RUN);
}
CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_RESET);

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_sequence_replay 19

This next example replays a motion JPEG sequence directly from disk.

 /* Read/open in input file, then replay as before */
 TMG_image_set_infilename(Hjpeg_image, "seq.jpg");
 TMG_JPEG_open_file(Hjpeg_image);
 TMG_JPEG_sequence_calc_length(Hjpeg_image); /* works on file */
 /* Could do a "TMG_JPEG_read_file(Hjpeg_image);" */

 TMG_JPEG_sequence_set_start_frame(Hjpeg_image, 1);
 CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_START);

 for (n = 0; n < 32; n++)
 {
 CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_RUN);
 TMG_display_image(Hdisplay, Himage1, TMG_RUN);
 }

 CRUNCH_sequence_replay(Hcrunch, Hjpeg_image, Himage1, 1, TMG_RESET);

For a detailed example please refer to the file “seq.c” on the Snapper SDK disks.

BUGS / NOTES

This function is supported under all operating systems/environments apart from real mode DOS because of
the memory limitations. Also this function always decompresses complete images and does not decompress
the image in strips.

The JPEG data format is exactly the same as “normal” JPEG/JFIF files except the data consists of multiple
frames with restart markers (FF D8 hex) between each frame.

SEE ALSO

TMG_sequence_set_start_frame, CRUNCH_sequence_record.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_set_Quality_factor 20

CRUNCH_set_Quality_factor

USAGE

Terr CRUNCH_set_Quality_factor(Thandle Hbase, ui16 Q_factor)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Q_factor An integer representing image quality after compression.

DESCRIPTION

This function sets the JPEG quality factor for compression. It is not used in decompression. It represents the
quality of the compressed image. A lower quality factor means lower image quality and higher compression
ratio, and vice-versa.

The range of the quality factor is from 1 to 400, although numbers above 80 will give very little improved
quality but with low (typically 6:1) compression ratios.

The default quality factor of 32 is used if this function (or CRUNCH_set_Quantization_factor) is not called.
This results in an image which the JPEG Specification describes as “usually nearly indistinguishable from the
original”.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

EXAMPLES

The following code sets the quality factor:

..
CRUNCH_set_Quality_factor(Hbase, 16);
..

BUGS / NOTES

There are no known bugs.

The quality factor is normalised to 16, which is common practice in JPEG software packages. This means
that when set to 16, the luminance and chrominance quantization tables are identical to those in the JPEG
Specification.

Note that quality factor and quantization factor are alternative ways of controlling the compression ratio. The
relationship is:

Quality factor = (50 / Quantization Factor) x 16

Both CRUNCH_set_Quality_factor and CRUNCH_set_Quantization_factor are provided to allow application
developers to work with the most convenient parameter in their application.

SEE ALSO

CRUNCH_set_Quantization_factor.

CRUNCH Programmer’s Manual v4.0.1 CRUNCH_set_Quantization_factor 21

CRUNCH_set_Quantization_factor

USAGE

Terr CRUNCH_set_Quantization_factor(Thandle Hbase, ui16 Q_factor)

ARGUMENTS

Hbase Handle to Crunch JPEG hardware.

Q_factor JPEG quantization factor.

DESCRIPTION

This function sets the JPEG quantization factor for compression. It is not used in decompression. It is used
to generate the quantization table which defines the number of quantization levels at which the luminance and
chrominance frequencies are quantized to. In simple terms, a higher quantization factor means lower image
quality and higher compression ratio, and vice-versa.

The range of the quantization factor is from 8 to 800, although numbers below 10 will give very little
improved quality but with low (typically 6:1) compression ratios.

The default quantization factor of 25 is used if this function (or CRUNCH_set_Quality_factor) is not called.
This results in an image which the JPEG Specification describes as “usually nearly indistinguishable from the
original”.

RETURNS

This function returns the following error codes:

ASL_OK If successful.

ASLERR_BAD_HANDLE The ISA-JPG handle is invalid.

EXAMPLES

The following code sets the quantization factor:

..
CRUNCH_set_Quantization_factor(Hbase, 100);
..

BUGS / NOTES

There are no known bugs.

The quantization factor is normalised to 50, which is consistent with other JPEG (hardware) systems. This
means that when set to 50, the luminance and chrominance quantization tables are identical to those in the
JPEG Specification.

Note that quality factor and quantization factor are alternative ways of controlling the compression ratio. The
relationship is:

Quality factor = (50 / Quantization Factor) x 16

Both CRUNCH_set_Quality_factor and CRUNCH_set_Quantization_factor are provided to allow application
developers to work with the most convenient parameter in their application.

SEE ALSO

CRUNCH_set_Quality_factor.

	Introduction
	Function Overview
	INITIALIZATION
	COMPRESSION / DECOMPRESSION FUNCTIONS

	Error Returns
	Sample Applications
	Function List
	CRUNCH_compress_from_snapper
	USAGE
	ARGUMENTS

	CRUNCH_compress
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_compress_image_to_image
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_decompress
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_decompress_image_to_image
	USAGE
	ARGUMENTS

	CRUNCH_sequence_record
	USAGE
	ARGUMENTS
	DESCRIPTION
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_sequence_replay
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_set_Quality_factor
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

	CRUNCH_set_Quantization_factor
	USAGE
	ARGUMENTS
	RETURNS
	EXAMPLES
	BUGS / NOTES
	SEE ALSO

