Application May 24, 2022

CoaXPress frame grabbers support time-lapse imaging for life science

HeLa cells imaged with fluorescent dye

Time-lapse imaging is the practice of taking thousands of images of a subject over a course of time to monitor changes to that subject. It is widely used in life science to monitor growth, movement and development of cells. Film frames are captured at a lower frequency than they are viewed, to allow scientists to view long-term changes in a short period.

Steps to successful time-lapse imaging

Planning: It’s important to carefully plan and prepare time-lapse imaging experiments to be able to get evaluable results. For example, the best possible conditions to keep the living cells alive and active under the microscope need to be established and maintained. The microscopic set-up is crucial, different microscopes and techniques will be suitable to answer different scientific questions. Also of great importance is to determine the sampling rate – the rate at which images should be acquired. This should be often enough not to miss crucial steps, but the light sensitivity of living cells will limit the number of possible samplings.

Image acquisition: Camera selection will be made based on factors including sensor resolution, frame rates and, for time-lapse in particular, high quantum efficiency and extremely low readout noise as these experiments usually run in low light conditions and depict structures with low contrasts. Using a CoaXPress camera, such as Hamamatsu’s scientific qCMOS 4xCXP ORCA-Quest camera, provides exceptionally high sensitivity and enables extremely fast image transfer of high resolution images to a CoaXPress frame grabber – the latest acquisition cards enable a maximum data rate of 50 Gbps to be achieved – combined with precise triggering capability.

Analysis of images and data: Various software applications are available to support advanced data analysis, such as NI’s LabVIEW or MathWorks’ MATLAB. Both of these, and several others, are compatible with Active Silicon’s FireBird CoaXPress frame grabbers. They enable the rapid collection and analysis of data, leading to quickly-built test environments and easy-to-replicate programs.

Drawing conclusions: Being able to design, test and confirm theories relies heavily on accurate,  credible and repeatable data. Time-lapse imaging is an application which, by its very nature, produces different results each time as well as huge amounts of image data, so automated object tracking and algorithms are used to look for patterns in data from which conclusions can be successfully drawn. Therefore, a wide library of data may be required.

Applications for time-lapse imaging

Researching cell division

Time-lapse microscopy is used to view the dividing of HeLa cells – cells that carry mutations in their DNA which cause them to continually divide rather than ever die. Removed during a biopsy from Henrietta Lacks, from where their name derives, these cancerous cells are known as immortal and provide a crucial example of an immortalized cell line. In fact, the first HeLa cell to be discovered in 1951 has daughter cells still in existence today which are sold for scientific research. Credited for advancements in vaccines and genome mapping, HeLa cells have played an important role in scientific research. Several Nobel prize winning research projects have depended on the use of this oldest and still one of very few immortal human cell lines.

Monitoring cancer treatment

Recent developments have allowed scientists to stain cells without destroying them and these are viewed using a phase-contrast microscope in a process known as live cell imaging. Cell tracking is used to determine the reaction of cells to different cancer treatment medications. In such instances, time-lapse imaging is generally carried out over a 96 hour period, although several weeks are possible. Cell growth, cell cycle progression, damage and cell death can be monitored. In a similar way, monitoring over a longer period allows oncologists to understand how cancers grow, providing invaluable data for novel research.

Boosting IVF success

Time-lapse incubation and imaging is used in IVF procedures to help identify the embryos most likely to successfully develop into fetuses. Usually, embryos have to be removed from the incubator to be examined under a microscope; time-lapse imaging now allows doctors to leave the embryo in situ in the incubator and monitored over time to determine the sample with the optimum characteristics and cell development for implantation. Newly designed “EmbryoScope” incubators encompass a built-in camera unit connected to a microscope system and advanced software removes the guesswork from selecting suitable embryos.

Microscope image of a cell embryo

Quality components deliver quality data

While time-lapse imaging may have traditionally not required high data rates or frame rates, modern high-resolution sensors and fast exposures settings still require very high speed readout rates and these are getting faster all the time. Fast action life science analysis may also require high frames rates even while it’s still considered as time-lapse imaging.

Active Silicon CoaXPress frame grabbers in combination with powerful scientific cameras provide imaging solutions which are reaching new horizons in life science research. Contact our team to see how to bring your microscope systems to the forefront of scientific exploration.

Latest News

See More News
Read More Product News
Harrier AF-Zoom USB Block camer
December 4, 2025

USB3 Camera SDK Enables Fast Integration with Jetson Orin

The engineering team working on our Harrier range of USB autofocus-zoom cameras has released an…

Read More Learning Center
Meeting room at the CXP meeting IVSM Fall 2025
November 24, 2025

Update on CoaXPress v3.0

Our CTO, Chris Beynon, has returned from the International Vision Standards Meeting (IVSM) in Haikou,…

Read More Learning Center
lots of glass bottles in different shades of green and clear glass.
November 19, 2025

The Role of Computer Vision in Waste Management

Computer vision plays a vital role in many modern recycling technologies. We’ve pulled together a…

Read More Company News
Gary Marsh, Solid State plc CEO
November 13, 2025

Gary Marsh 1966-2025

We are deeply saddened by the death of our CEO, Gary Marsh, and send our…

Upcoming Events

See More Events
Read More about VISION 2026 6-8 October 2026
Announcement for VISION 2026 Machine Vision Show in Stuttgart

VISION 2026

Stuttgart, Germany

Active Silicon will be exhibiting again at VISION 2026 and we look forward to inspiring…