Learning Center June 19, 2019

On-chip polarization

Polarized image of plastic under stress

Polarizing cameras have been available for some time and greatly enhance many areas of machine vision and medical imaging. Recent advancements in sensor technology, however, are making polarization more affordable and accessible. We touched on this in our recent blog about bio-inspired artificial vision, but here we take a closer look at the technology.

Polarizing cameras are useful when inspecting transparent objects, reflective or translucent surfaces and to analyze material stress. Application examples include: identifying areas of stress (and therefore possible weakness) in plastic manufacture; imaging through water by eliminating surface reflection in marine applications; classifying objects in low light conditions where improved contrast allows greater recognition in industrial imaging; and differentiating between tissue types to enhance medical diagnoses.

Conventional methods

Bayer filters were first patented in 1976 and are still the most commonly-used filters in machine vision color imaging today. The process works by arranging color filters on the pixel array of an image sensor in a particular (Bayer) mosaic, with 50% of the pixels having a green filter, 25% a red filter and 25% a blue filter. The ratio of red, green and blue filters can be altered to adjust resolution and brightness to best fit the task in hand. Algorithms then interpret (“demosaic” or “debayer”) the resulting color values to produce an interpolated image.

Polarization has conventionally been achieved by the use of polarization filters in front of the camera. Examples include wire grid, dichroic, circular and crystalline polarizers. In such systems, three cameras each with a differently oriented filter may be required, adding to overall cost. Alternatively, three filters can be used with one camera, but the filters need to flipped or rotated so that each one is placed in front of the camera in turn, all at extremely high speed, of course. This option can introduce latency to the vision system and increase the number of moving parts and therefore risk of component failure.

New technology

Sony have recently released their IMX250MZR CMOS Pregius sensor, combining Bayer type pattern imaging and polarizers all on one chip. The technology was recognized by inVISION with one of their ten Top Innovation Awards in 2019 and has since been adopted by camera manufacturers. Available products include JAI’s GO-5100MP-USB industrial area scan camera, Imperx’s Camera Link based C2420Z and LUCID’s polarized Phoenix and Triton cameras. Using wire grid polarizers within its design, this sensor moves away from filtering light by the intensity of the wavelength, and instead filters light according to the orientation of the wavelength. The polarizer is built as part of the chip, right on top of the photodiodes and under the on-chip lens layer. Each of the four photodiodes has a different polarization angle:  0, 45, 90 or 135 degrees. This ground-breaking technology enables the sensor to deliver one-shot, real-time, pixel-level resolution polarization information. Moreover, it removes the need for additional components in the vision system, thereby reducing installation cost and improving reliability.

Active Silicon has been supplying quality components to OEMs and system integrators for over 30 years, and we pride ourselves in supporting new developments in machine vision. We have an extensive range of cameras and interface boards suitable for a variety of industrial, medical and surveillance applications. View our products online or contact us to benefit from our experience and unrivaled support.

Latest News

See More News
Read More Industry News
Large fish swallowing small fish and logos for Headwall and EVK
January 17, 2025

Headwall Group acquires EVK

EVK DI Kerschhaggl GmbH (EVK), a manufacturer of sensor-based sorting and analysis systems, is now…

Read More Product News
Berries on a food sorting production line
January 16, 2025

Should you consider an Oncilla Machine Vision Computer?

Oncilla machine vision computers are rugged industrial PCs engineered for high processing capabilities and sophisticated…

Read More Learning Center
A person holding a magnifying glass with a close up camera lens behind
January 9, 2025

Tech Focus: SWIR imaging enriches machine vision

Short-Wave Infrared (SWIR) imaging is a relatively new imaging technology. It captures wavelengths of light…

Read More Industry News
January 7, 2025

Zebra Technologies to acquire Photoneo

Zebra Technologies, headquartered in Illinois, USA, is set to acquire Photoneo, a Slovakian-based provider of…

Upcoming Events

See More Events
Read More about IFAM 2025 11-13 February 2025
Announcing the IFAM 2025, International trade fair for automation & mechatronics in Ljubljana

IFAM 2025

Ljubljana, Slovenia

The IFAM is opening its doors again in February in Ljubljana. It is an important…